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Álvaro Carteaa,b, Fayçal Drissia, Marcello Mongaa,b

aOxford-Man Institute of Quantitative Finance, University of Oxford
bMathematical Institute, University of Oxford

Abstract

We introduce a new comprehensive and model-free measure for the unhedgeable and predictable loss (PL)

incurred by liquidity providers in constant function markets (CFMs) and in concentrated liquidity markets.

PL compares the value of the LP’s holdings in the CFM liquidity pool (assuming no fee revenue) with that of

a self-financing portfolio that (i) continuously replicates the dynamic holdings of the LP in the pool to offset

the market risk of the LP’s position, and (ii) invests in a risk-free account. We provide closed-form formulae

for PL in CFMs with and without concentrated liquidity, and show that the losses stem from two sources:

convexity cost, which depends on liquidity taking activity and the convexity of the pool’s trading function;

and opportunity cost, which is due to locking the LP’s assets in the pool. For liquidity providers, PL is the

appropriate measure to assess the cost of liquidity provision in CFMs, so that fees and compensation to LPs

provide the right incentives for a well-functioning market. When prices form outside of the pool, we show

that PL is reduced when liquidity taking is costly, i.e., when the convexity of the pool’s trading function

is high. On the other hand, when prices form in the pool, PL is reduced when liquidity taking is cheap,

i.e., when the convexity of the trading function is low. Finally, we use Uniswap v3 and Binance transaction

data to compute PL and fees collected by LPs and show that, at present, liquidity provision in CFMs is a

loss-leading activity.

Keywords: Decentralised Finance, Automated Market Making, Smart Contracts, Concentrated Liquidity,

Algorithmic Trading, Market Making, Predictable Loss, Impermanent Loss.

1. Introduction

The emergence of decentralised finance (DeFi) ecosystems poses great challenges to traditional financial

services based on intermediaries. Within DeFi, automated market makers (AMMs) are trading venues in
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Ledford, Andre Rzym, and Leandro Sánchez-Betancourt, for insightful comments. The authors thank the Fintech Dauphine Chair,
in partnership with Mazars and Crédit Agricole CIB, for their financial support. We are also grateful to seminar participants
at Oxford, the OMI, the Oxford Victoria Seminar, and the DeFi Research Group. FD is grateful to the Oxford-Man Institute’s
generosity and hospitality. MM acknowledges financial support from the EPSRC Centre for Doctoral Training in Mathematics of
Random Systems: Analysis, Modelling and Simulation (EP/S023925/1).

1



which the rules to clear demand and supply depart considerably from those of the matching engines in

traditional limit order books (LOBs). In contrast to traditional electronic exchanges which are organised

around LOBs to clear demand and supply of liquidity, the takers and providers of liquidity in AMMs inter-

act through liquidity pooling; liquidity providers (LPs) deposit their assets in a liquidity pool, and liquidity

takers (LTs) exchange assets directly with the pool. Currently, the majority of AMMs are constant func-

tion markets (CFMs), and constant product markets (CPMs) with concentrated liquidity (CL) are the most

popular type of CFM, with Uniswap v3 as a prime example; see Adams et al. (2021).

CFMs rely on a deterministic trading function and a set of rules to determine how liquidity takers and

makers interact with the pool. In particular, the trading function determines marginal exchange rates (akin

to the midprice in an LOB) and execution exchange rates (akin to the prices received by liquidity taking

orders that walk the book) as a function of the quantity of the assets in the pool. We show that precluding

roundtrip arbitrages where both legs are executed in the CFM requires a convex trading function.

A key difference between CFMs and LOBs is how liquidity is provided and compensated. In LOBs,

market makers post liquidity on both sides of the midprice to earn the spread on roundtrip trades. In CFMs,

LPs deposit their assets in the pool, and in CPMs with CL, LPs specify a range of exchange rates in which

they deposit their assets. The assets rest in the pool until they are withdrawn and LPs are compensated with

the fees paid by LTs who take liquidity from the pool. In current designs, the fees paid by LTs are a fixed

percentage of the size of their liquidity taking trades. In CFMs, if LPs do not collect enough fees for making

liquidity, their business is not viable because they would provide liquidity to the market at a loss.

In this paper, we focus on liquidity provision in CFMs and in CPMs with CL — see Cartea et al. (2022a)

for an analysis of liquidity taking in these venues. For both types of venues, we derive the continuous-time

dynamics of the wealth of LPs, and we introduce predictable loss (PL) which is a model-free measure that

characterises the inevitable and predictable losses of LPs. PL quantifies the loss of value when depositing

one’s assets in a CFM pool instead of holding a self-financing dynamic portfolio outside the pool that (i)

replicates the risk of the LP’s position in the pool and (ii) invests in a risk-free account. We prove that PL

is a negative (i.e., LPs provide liquidity at a loss) and a predictable component in the dynamics of the LP

position value in the pool. PL stems from two sources. One source is the convexity cost whose magnitude is

a function of liquidity taking activity and the convexity of the CFM’s trading function. The other source is

the opportunity cost, which is incurred by LPs who lock assets in the pool instead of investing them in the

risk-free asset.

Academics and practitioners commonly use impermanent loss (IL) to measure the losses incurred by

LPs. IL quantifies the loss of value when depositing assets in a CFM pool instead of passively holding

the assets outside the pool. We show that IL is not an appropriate measure because it can underestimate

or overestimate the losses that are solely imputable to liquidity provision. In contrast, the convexity and

opportunity costs of PL are predictable and unhedgeable components in the wealth of LPs. Moreover, we

show that if the randomness in the marginal exchange rate of the CFM pool is exogenous (prices form

outside the pool), then PL is reduced when the convexity of the trading function is high, i.e., when trading

is costly. On the other hand, if the randomness in the marginal rate is a result of the liquidity taking trading

2



activity (prices form in the pool), then PL is reduced when the convexity of the trading function is low, i.e.,

when trading is cheap.

Finally, we use Uniswap v3 data from the pool ETH/USDC (Ethereum and USD coin) between 5 May

2021 and 10 January 2023 to compute PL. Our analysis of the historical transactions in Uniswap v3 shows

that the fees collected from market making activity are not enough to cover PL. To the best of our knowl-

edge, this work is the first to (i) characterise the unhedgeable losses of LPs in closed-form in a model-free

framework for CFMs, (ii) characterise the unhedgeable losses of LPs in closed-form in CPMs with CL, and

(iii) derive the continuous-time dynamics for the wealth of LPs in CPMs with CL.

Early works on AMMs are in Chiu and Koeppl (2019), Angeris et al. (2021b), Lipton and Treccani

(2021), Lipton and Hardjono (2021), Lipton and Sepp (2021). Numerous works in the literature study

liquidity provision in CFMs. Angeris and Chitra (2020) study but do not prove the convexity of the trading

function, Neuder et al. (2021) and Cartea et al. (2022b) study strategic liquidity provision in CFMs with

concentrated liquidity, and Fukasawa et al. (2023) study the hedging of the impermanent losses of LPs.

Other works include Heimbach et al. (2022) who discuss the tradeoff between risks and returns that LPs

face in Uniswap v3, and Fan et al. (2022) who show how LPs can exploit their beliefs on future rates.

Another strand of the literature explores fee structures for fair compensation of LPs. Evans et al. (2021)

study optimal fees in geometric markets, Sabate-Vidales and Šiška (2022) study variable fees in CPMs, and

Cohen et al. (2023) derive a lower bound for fee revenue to make liquidity provision profitable in CFMs.

Further, Cartea et al. (2022a), Cartea et al. (2023a), and Jaimungal et al. (2023) show how to optimally

trade a large position and execute statistical arbitrages using signals in CPMs, Berg et al. (2022) empirically

study inefficiencies in CFMs, and Bichuch and Feinstein (2022) introduce an axiomatic framework for

CFMs and exchange rates. Finally, liquidity provision models in traditional markets are in Glosten and

Milgrom (1985), Guéant et al. (2012), Cartea et al. (2015), Guéant (2016), Drissi (2022).

The remainder of the paper proceeds as follows. Section 2 describes liquidity provision in CFMs and

proves that a convex trading function does not admit instant roundtrip arbitrages. Next, we derive the

wealth dynamics of LPs and introduce PL for CFMs as the combined effect of the convexity cost and the

opportunity cost. Finally, we compare PL and IL for CFMs. Section 3.4 describes liquidity provision in CL

pools. Next, we derive the continuous-time dynamics of the wealth of LPs, and we extend PL for passive

and active LPs. Finally, Section 4 showcases PL in Uniswap v3 and shows that liquidity provision is not

fairly compensated in the pool that we consider.

2. Predictable losses of liquidity providers in CFMs

This section reviews how CFMs operate and discusses the profitability of liquidity provision measured with

IL and PL. Subsection 2.1 recalls the LT and the LP provision conditions that determine how a CFM clears

demand and supply. Subsection 2.2 first proves that roundtrip arbitrages within the CFM are not possible

when the trading function is convex. Next, we introduce PL for CFMs as a comprehensive measure of the

losses incurred by LPs and show that these losses result from (i) the convexity of the trading function and
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(ii) the opportunity cost from locking assets in the pool. Finally, Subsection 2.3 generalises IL to CFMs and

compares the measure with PL.

2.1. Constant function markets

Here, we recall the properties of CFMs; see Angeris and Chitra (2020), Angeris et al. (2021b), Evans et al.

(2021), Cartea et al. (2022a). Consider a risky asset Y that is valued in terms of a reference asset X and

denote by Z the marginal exchange rate of asset Y in terms of asset X , where the rate Z is determined

by the available liquidity in the pool. The marginal exchange rate of asset Y in terms of asset X is the

exchange rate in the pool for a trade of infinitesimal size in asset Y . A CFM is characterised by a trading

function f : R++ ×R++ 7→ R which is continuously differentiable and increasing in its arguments;R++

denotes the set of positive real numbers. Below, we describe the LT trading condition and the LP provision

condition for CFMs. These two conditions determine how market participants interact in the pool and how

markets are cleared.

LT trading condition. Assume that the liquidity pool initially consists of quantity x of asset X and

quantity y of asset Y . We refer to the pair (x, y) as the reserves of the pool. LT transactions involve

exchanging a quantity ∆y of asset Y for a quantity ∆x of asset X , and vice-versa. The quantities to

exchange are determined by the LT trading function

f(x, y) = f(x+∆x, y −∆y) = κ2 . (1)

The value of the depth κ > 0 is constant before and after a trade is executed, so the LT trading condition

(1) defines a level curve. For a fixed value of the depth κ, we define the level function φκ so that f(x, y) =

κ2 ⇐⇒ x = φκ(y).
1 For any value κ of the depth, we assume that the level function φκ : R++ 7→ R++

is twice differentiable.

The LT trading condition (1) links the state of the pool before and after a liquidity taking trade is

executed. For LTs, this condition specifies the exchange rate Z̃(∆y) = (φκ (y)− φκ (y +∆y))
/
∆y to

trade a (possibly negative) quantity ∆y of asset Y , and the marginal exchange rate Z = lim∆y→0 Z̃(∆y) =

−φ′
κ(y) of asset Y in terms of asset X in the pool. In particular, Cartea et al. (2022a) show that one can use

the convexity φ′′
κ(y) of the level function to approximate the execution costs

∣∣∣Z̃(∆y)− Z
∣∣∣ of LT trades in

the pool. Below, we prove that there is no roundtrip arbitrage in a CFM if the level function φ is convex.

LP provision condition. Assume that the liquidity pool initially consists of quantity x of asset X and

quantity y of asset Y . LP transactions involve depositing or withdrawing quantities (∆x,∆y) of asset X

and asset Y . Let κ0 be the initial depth of the pool and let κ1 be the depth of the pool after an LP deposits

(∆x,∆y), i.e., f (x, y) = κ20 and f (x+∆x, y +∆y) = κ21. Let φκ0 and φκ1 be the level functions

1The level function is akin to the forward exchange function in Angeris et al. (2022a).

4



corresponding to the values κ0 and κ1, respectively. Denote by Z the initial marginal exchange rate of the

pool. The LP provision condition requires that LPs do not change the marginal rate Z, so

−φ′
κ0

(y) = −φ′
κ1

(y +∆y) = Z . (2)

The LP provision condition (2) links the state of the pool before and after a liquidity provision operation

is executed. The trading function f (x, y) in (1) is increasing in the pool quantities x and y. Thus, when

liquidity provision activity increases (decreases) the size of the pool, the value of κ increases (decreases).

For liquidity providers, the key difference between the traditional and the new venues is that in LOBs,

market makers post limit orders above and below the midprice to earn the spread on roundtrip trades, while

in CFMs, LPs earn fees paid by LTs when their liquidity is used. In LOBs, market makers are not present

in the book after all their orders are either executed or cancelled. On the other hand, in CFMs, posted

liquidity remains in the pool until it is withdrawn by the LP. Indeed, in CFMs, LPs do not receive payments

directly on their accounts and their holdings rest in the pool. Only when the LP removes her liquidity, are

the accumulated fees paid into her account and any capital gains or losses are realised. In some CFMs, the

fees are added to the stock of liquidity of LPs instead of accruing in separate accounts.

CPMs. A popular type of CFM is the constant product market (CPM) such as Uniswap v2, where the

trading function is f (x, y) = x × y, so the level function is φ (y) = κ2
/
y, the marginal rate is Z = x/y,

and the execution rate for a quantity ∆y is Z̃ (∆y) = Z − Z3/2∆y
/
κ. In CPMs, the liquidity provision

condition is x/y = (x+∆x)/(y +∆y) when quantities (∆x,∆y) are added to the pool. Thus, liquidity is

provided so that the proportion of x and y in the pool is preserved; see Cartea et al. (2022a).

In the remainder of this paper, we fix a filtered probability space
(
Ω,F ,P;F = (Ft)t∈[0,T ]

)
that satis-

fies the usual conditions, where F is the natural filtration generated by the collection of observable stochas-

tic processes defined below, and T > 0 is a fixed time (trading) horizon. Moreover, we assume that the

processes that we define below are semi-martingales and are thus Ito integrable.

2.2. Predictable loss

This section introduces PL as a comprehensive and model-free measure of the losses incurred by LPs in

CFM pools. Consider an LP who deposits quantities (x0, y0) in a CFM pool for the pair of assets X and

Y . The LP’s position is self-financed, so she does not deposit or withdraw additional assets throughout the

trading horizon [0, T ]. Moreover, assume that other LPs do not deposit or withdraw liquidity in the pool

throughout the same trading horizon, so the depth κ of the pool is constant and we denote by φ the level

function throughout [0, T ] .2

2These assumptions simplify the equations for IL and PL in CFMs because liquidity provision activity changes κ which
changes the level function φκ. We expect the results that we state below to hold when there is liquidity provision activity; for
instance, it is straightforward to generalise the results for IL and PL when κ is a counting process that models arrivals of deposits
and withdrawals; see Appendix A.
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The initial value of the LP’s position is x0 + y0 Z0 . A key feature of CFMs is that, as the marginal

exchange rate Z (of asset Y in terms of asset X) changes throughout the investment horizon, so do the

quantities of asset X and asset Y held by the LP in the pool because LTs use the LP’s liquidity to trade.

Denote by (xt)t∈[0,T ] and (yt)t∈[0,T ] the processes that describe the LP’s holdings in assets X and Y ,

respectively, as a result of LT activity. The marginal exchange rate in the pool is described by the process

(Zt)t∈[0,T ]. Finally, the value of the liquidity provision strategy is given by the process (αt)t∈[0,T ] =

(xt + yt Zt)t∈[0,T ].

No roundtrip arbitrage and convexity of the level function. Proposition 1 shows that no roundtrip

arbitrage in CFMs requires convex level functions.

Proposition 1. Let φ ∈ C2 (R++) be the level function of a CFM and assume there are no profitable

instantaneous roundtrip arbitrages within the CFM. Then, φ is convex.

Proof Let Zbid
t (∆y) and Zask

t (∆y) denote the exchange rates at time t ∈ [0, T ] obtained for a sell trade

and a buy trade of size ∆y, respectively. Assume there is no roundtrip arbitrage, so the bid-ask spread is

nonnegative and we write

Zbid
t (∆y) =

φ(yt)− φ(yt +∆y)

∆y
≤ φ(yt −∆y)− φ(yt)

∆y
= Zask

t (y) . (3)

Now, as ∆y → 0 we obtain the equality

lim
∆y→0

Zbid
t (∆y) = lim

∆y→0
Zask
t (∆y) = Zt = −φ′(yt) . (4)

Next, the inequalities in (3) also show that the level function φ is convex because

φ(yt)− φ(yt +∆y)

∆y
≤ −φ′(yt) ≤

φ(yt −∆y)− φ(yt)

∆y
,

for any t ∈ [0, T ] and for any ∆y > 0.

From wealth dynamics to predictable loss. Here, we assume that the LP does not collect fees and focus

on the value of her holdings in the pool. To motivate our definition of PL, we derive the wealth dynamics

of LPs in CFMs and show that they consist of a hedgeable market risk component and an unhedgeable

predictable loss component.

To obtain the wealth dynamics of the LP in the CFM pool in terms of the numeraire X , we use Ito’s

lemma to write the dynamics of the position value α as

dαt =d (xt + yt Zt)

=d (φ (yt) + Zt yt)
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=
1

2
φ′′ (yt) d ⟨y, y⟩t + yt dZt + d ⟨Z, y⟩t ,

where ⟨· , ·⟩ denotes the quadratic variation operator. Next, use Zt = −φ′(yt) to write d ⟨Z, y⟩t =

−φ′′ (yt) d ⟨y, y⟩t, and write the wealth dynamics of the LP as

dαt = −1

2
φ′′ (yt) d ⟨y, y⟩t + yt dZt . (5)

The first term on the right-hand side of (5) is a negative and a predictable component in the wealth

of LPs which we call convexity cost — recall that φ is convex to preclude roundtrip arbitrages — and the

second term is the dynamics of a self-financed portfolio that holds quantity yt of asset Y at time t ∈ [0, T ] .

The convexity cost in CFMs is an unhedgeable predictable loss component that results from the convexity

of the trading function and the quadratic variation of the liquidity taking trading flow. Below, we show that

if the LP replicates the market risk of her liquidity position with a self-financing portfolio, then she holds

excess cash because of the loss in value that her holdings would incur in the pool. The excess cash can be

invested in a risk-free account, and we refer to this as the opportunity cost from locking the LP’s assets in

the pool.

We refer to the combined effect of the convexity cost and the opportunity cost as PL. The PL measure

is a model-free analytic formula for the predictable and inevitable losses incurred by LPs.3 PL measures

the losses of LPs which should be compensated by fee revenue so liquidity provision is not a loss-leading

activity in CFMs. The proposition below formalises PL when there exists a riskless asset B that yields a

risk-free rate. More precisely, it provides a closed-form formula for PL in a CFM and shows it is a function

of the convexity of the level function and the liquidity taking activity in the pool.

Proposition 2. Predictable loss in CFMs. Let φ ∈ C3 (R++) be the strictly convex level function of a CFM

with initial reserves (x0, y0) held by an LP. Assume there are no additional liquidity deposits or withdrawals

in the pool throughout a trading period [0, T ]. Assume there is a riskless asset B that yields the risk-free

rate r ≥ 0 where (Pt)t∈[0,T ] denotes the marginal rate to exchange asset X for asset B, and assume the

dynamics of P are independent of the quantity (yt)t∈[0,T ] held by the LP in the pool. Both assets X and Y

are risky and the LP marks-to-market her wealth in terms of B. Let (Zt)t∈[0,T ] denote the marginal rate to

exchange asset Y for asset X in the pool and let (yt)t∈[0,T ] denote the quantity of asset Y held by the LP in

the pool.

Assume that exchanging Y and X for B is frictionless, and define the PL process (PLt)t∈[0,T ] as

(PLt)t∈[0,T ] =
(
αt − αD

t

)
t∈[0,T ]

, (6)

where PL0 = 0, (αt)t∈[0,T ] is the value of the LP’s position and (αD
t )t∈[0,T ] is the value of an alternative

dynamic portfolio initiated with the same quantities (x0, y0) and which is (i) continuously rebalanced to

3PL is inevitable while the LP’s holdings are in the pool.
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track the quantities (xt, yt) that the LP holds in the pool and (ii) invests any excess wealth in the risk-free

account.

Then the process PL in (6) is decreasing and is given by

PLt = − 1

2

∫ t

0
Ps φ

′′ (ys) d ⟨y, y⟩s︸ ︷︷ ︸
Convexity cost≥ 0

−
∫ t

0

(
αD
s − αs

)
r ds︸ ︷︷ ︸

Opportunity cost≥ 0

, (7)

where
(
αD
t − αt

)
t∈[0,T ]

is an increasing process with initial value 0. In particular, PL in (7) satisfies

PLt ≤ −1

2

∫ t

0
Ps φ

′′ (ys) d ⟨y, y⟩s ≤ 0 . (8)

Proof First, we derive the dynamics of the LP’s wealth α. The dynamics of P are independent of the quan-

tity y, so the processes (Zt = −φ′(yt))t∈[0,T ] and (xt = φ(yt))t∈[0,T ] are also independent of (Pt)t∈[0,T ] ,

and the rate to exchange asset Y for asset B is described by the process (Zt Pt)t∈[0,T ] . Also, exchanging Y

and X for B is frictionless so one exchanges X and Y at the rates Pt and Zt Pt, respectively, with no other

costs.

The process (αt)t∈[0,T ] = (Pt xt + Pt Zt yt)t∈[0,T ] describes the value of the LP’s holdings in the pool in

units of asset B. Note that the quantities Zt and xt in the pool are stochastic because they vary with the

quantity yt, so we use Ito’s lemma to write the dynamics of the position value in terms of the numeraire B

as

dαt =d ((xt + yt Zt)Pt)

= (xt + yt Zt) dPt + φ′ (yt) Pt dyt +
1

2
Pt φ

′′ (yt) d ⟨y, y⟩t + yt Pt dZt + Zt Pt dyt + Pt d ⟨Z, y⟩t

= (xt + yt Zt) dPt +
1

2
φ′′ (yt) Pt d ⟨y, y⟩t + yt Pt dZt + Pt d ⟨Z, y⟩t .

Next, use Zt = −φ′(yt) and Ito’s lemma to write d ⟨Z, y⟩t = −φ′′ (yt) d ⟨y, y⟩t , so

dαt = (xt + yt Zt) dPt + yt Pt dZt −
1

2
φ′′ (yt) Pt d ⟨y, y⟩t .

Next, we derive the dynamics of the alternative portfolio αD. First, define a second alternative self-financing

portfolio α which starts with the same initial wealth α0 and only tracks the holdings (xt, yt) in the pool.

The dynamics of α are

dαt = xt dPt + yt d(Zt Pt) = xt dPt + yt Zt dPt + yt Pt dZt .

Note that (αt − αt)t∈[0,T ] is an increasing process because dαt − dαt = −1
2 Pt φ

′′ (yt) d ⟨y, y⟩t . At any

time t, the alternative portfolio αD invests the difference αD
t −α in a risk-free account, so

(
αD
t − αt

)
t∈[0,T ]
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is an increasing process and so is
(
αD
t − αt

)
t∈[0,T ]

. Thus, the dynamics of αD are

dαD
t =

(
αD
t − αt

)
r dt+ xt dPt + yt Zt dPt + yt Pt dZt ,

and conclude that PL is given by

PLt = −1

2

∫ t

0
Ps φ

′′ (ys) d ⟨y, y⟩s −
∫ t

0

(
αD
s − αs

)
r ds .

Finally, the inequality in (8) follows from

φ′′ (yt) > 0 , Pt > 0 , d ⟨y, y⟩t ≥ 0 , xt = αt − αt ≥ 0 , ∀t ∈ [0, T ] , and r ≥ 0 .

Next, we discuss PL as a result of the randomness in the marginal rate and in the liquidity taking trading

flow. PL in (6) can also be written as

PLt = − 1

2

∫ t

0
Ps

d ⟨Z,Z⟩s
φ′′ (ys)︸ ︷︷ ︸

Convexity cost≥ 0

−
∫ t

0

(
αD
s − αs

)
r ds︸ ︷︷ ︸

Opportunity cost≥ 0

, (9)

so PL is a function of the quadratic variation of the marginal rate process Z. Both equations (7) and (9) show

that the magnitude of PL depends on the convexity of the level function, and that the convexity of the level

function has opposing effects on PL depending on which dynamics one assumes for the liquidity taking

flow y and for the marginal exchange rate Z. Recall that the convexity of the level function is a measure of

the trading costs that LTs incur in the pool; see Cartea et al. (2022a).

For example, if one assumes that price formation is exogenous to the pool and that the marginal rate

follows the dynamics dZt = σ dWt, where (Wt)t∈[0,T ] is a Brownian motion, then trading in the pool is

by LTs who align the reserves of the pool so the marginal rate in the pool follows dynamics driven by the

exogenous process W . In this case, PLt = −σ2

2

∫ t
0

Ps
φ′′(ys)

ds, so the convexity, i.e., the execution costs of

LTs, reduces PL. On the other hand, if one assumes that price formation is endogenous to the pool and that

the reserves in asset Y follow the dynamics dyt = χdWt, where χ is a positive volatility parameter, then

the marginal rate is determined by trading activity in the pool. In this case, PLt = −χ2

2

∫ t
0 Ps φ

′′ (ys) ds.

Thus, as execution costs for LTs increase, so does the PL of the LPs. In practice, one expects two sources

of randomness. One, exogenous randomness in the marginal rate Z that drives informed liquidity taking

trading flow when prices form in alternative trading venues. Two, endogenous randomness in the process

y when prices form in the pool and as a result of uninformed (noise) trading. The former leads to losses

for LPs that are reduced when trading is costly, and the latter leads to losses for LPs that are reduced when

trading is cheap. Finally, if r ≤ 0, the opportunity cost is zero because we assume that the alternative

portfolio would not invest the excess cash in the risk-free account.
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Related work on the losses incurred by LPs includes that by Angeris et al. (2021a) who study the price

arbitrage profits of LTs in CFM pools; price arbitrage refers to liquidity taking trades that profit from price

differences between the CFM pool and an exogenous market. Later, Milionis et al. (2022) introduce loss-

versus-rebalancing (LVR) to study these profits. Both pieces characterise the price arbitrage profits of LTs,

or equivalently the losses of LPs, by introducing (i) an optimisation problem solved by an arbitrageur,

and (ii) an exogenous exchange rate for which they assume dynamics. In contrast to these approaches,

PL is model-free and uses minimal assumptions for the trading flow and the marginal rate dynamics. In

particular, if one considers that X is the numeraire, that Z follows a geometric Brownian motion with

constant volatility, and that the risk-free rate is zero, then PL in (9) reduces to the LVR in Milionis et al.

(2022). In contrast to LVR, PL can be estimated without specifying dynamics for the marginal rate or the

trading flow (see Barndorff-Nielsen and Shephard (2002)) and without specifying a parametric form for the

level function.

2.3. Impermanent and Predictable loss

Here, we compare PL and IL as measures for the losses incurred by LPs. IL, or divergence loss, is sometimes

used to characterise the risk of providing liquidity in a CFM; see Loesch et al. (2021) for CPMs, and

Fukasawa et al. (2022) and Angeris et al. (2022b) who generalise the measure to CFMs and introduce

conditions to ensure liquidity provision is profitable. IL refers to the loss in value when depositing one’s

assets in a pool instead of passively holding the assets outside the pool. Next, we derive similar results to

those in the literature, but in contrast, we use the convexity of the level function to characterise IL in CFMs.

IL compares the evolution of the value of the passive LP’s position α in the pool with the evolution

of a self-financing portfolio αP invested in an alternative venue. The portfolio αP is initiated with the

same quantities (x0, y0) as those the LP deposits in the pool, and executes a buy-and-hold strategy; i.e.,

the quantities in the alternative portfolio do not change throughout the LP’s trading horizon. Denote by

(αP
t )t∈[0,T ] = (x0 + y0 Zt)t∈[0,T ] the process for the value of the buy-and-hold alternative portfolio; note

that αP
0 = α0. The value αt of the passive LP’s position in the pool and the value αP

t of the alternative

portfolio that holds the assets outside the pool at time t ∈ [0, T ] areαP
t = x0 + Zt y0 ,

αt = xt + Zt yt ,
=⇒

αP
t = φ (y0)− φ′(yt) y0 ,

αt = φ (yt)− φ′(yt) yt ,

where xt and yt are the liquidity in the pool at time t.

We denote by (ILt)t∈[0,T ] the IL process that measures the difference between the value of the two

portfolios α and αP:

ILt = αt − αP
t = −

(
φ (y0)− φ (yt)− φ′(yt) (y0 − yt)

)
. (10)

The convexity of the level function shows that ILt ≤ 0. For small variations of the reserves y in asset Y ,
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one can approximate ILt with

ILt ≈ −1

2
φ′′(yt) (y − yT )

2 .

In a CPM, the IL in (10) is explicitly given by

ILt =

(
κ
√
Z0 − κ

√
Zt + κ

(
Zt

√
1

Z0
−
√

Zt

))
= −κ

√
Z0

(
1−

√
Zt

Z0

)2

,

where κ is the fixed depth of the pool throughout [0, T ] . Finally, when yt = y in CFMs or CPMs, IL is zero,

hence the loss is called “impermanent”. The following proposition summarises our characterisation of IL

with the (necessary) convexity of the level function.

Proposition 3. Let φ ∈ C2 (R++) be a convex level function. Then the IL process in (10) for CFMs is

given by

ILt = −
(
φ (y)− φ (yt)− φ′(yt) (y − yt)

)
≤ 0 ,

and the IL in CPMs is given by

ILt = −κ
√
Zt

(
1−

√
Zt

Z0

)2

≤ 0 .

Corollary 1. Assume the marginal rate Z is a continuous random variable, then IL is strictly negative

almost surely in CPMs without CL.

IL is not an appropriate measure to characterise the losses of LPs because throughout the period [0, T ],

the alternative buy-and-hold portfolio αP is not exposed to the same market risk as the holdings α of the LP

in the pool. In particular, IL can be partly hedged so it can underestimate or overestimate the losses that are

solely imputable to liquidity provision. In contrast, PL is the predictable and unhedgeable component in the

wealth of LPs. The next section extends PL to the more complex case of CPMs with CL.

3. Predictable losses of liquidity providers in CPMs with CL

Presently, the most liquid and popular CFMs use CL for liquidity provision. CL was introduced in Uniswap

v3 in Adams et al. (2021) and studied by Clark (2021), Loesch et al. (2021), Hashemseresht and Pourpouneh

(2022), and Heimbach et al. (2022). To the best of our knowledge, our work is the first to characterise the

dynamics of the wealth of LPs in CPMs with CL in a continuous time framework; see Subsection 3.2 for

passive LPs and Subsection 3.3 for active LPs. Moreover, Subsection 3.4 characterises analytically the

unhedgeable losses of LPs in CL pools by extending PL as a measure of the predictable losses of LPs to
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CPMs with CL. In CL pools, PL is a function of both the range where the LP provides liquidity and the

liquidity taking activity.

3.1. Constant product markets with concentrated liquidity

The key feature of a CPM pool with CL is that LPs specify a range of rates (Zℓ, Zu] in which to post liquid-

ity. The bounds Zℓ and Zu of the LP’s position take values in a discretised finite set of rates {Z1, . . . , ZN}
called ticks.4 The range between two consecutive ticks defines the smallest width for ranges in which LPs

can provide liquidity.

LP provision condition. First, we formally derive the LP provision condition for CPMs with CL. Assume

that only one LP provides liquidity
(
xi, yi

)
in a tick range (Zi, Zi+1] with depth κi, and assume that the

current rate Z is within the range (Zi, Zi+1], where Zi and Zi+1 are two consecutive ticks. By design, CPM

pools with CL obey the constant product formula between two consecutive ticks. In CPMs with CL, the

assets deposited by the LP in the tick range (Zi, Zi+1] must consist of a quantity yi to cover rate movements

from the current rate Z to the rate Zi+1, and a quantity xi to cover rate movements from the current rate

Z to the rate Zi ; see Figure 1a. When the rate exits the range, the position consists of only one of the two

assets, because the other asset is fully depleted and the remaining liquidity becomes inactive, i.e., it does

not fill trades.
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×109
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shift
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Current rate

Level function
Real reserves

(a) Quantity of assets to provide in a tick range. The blue
segment corresponds to the constant product level function
in the virtual asset coordinates and the grey segment cor-
responds to the constant product level function in the real
asset coordinates.
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(b) Changes in the level function in the virtual assets coor-
dinate system when adding liquidity.

Figure 1: Geometry of CPMs with CL and the LP provision condition.

In CL pools, each tick range is a constant product pool that consists of larger reserves than the assets

resting in the range because the assets resting in the tick range only need to cover marginal rate movements

4In LOBs, a tick is the smallest price increment.
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from its lower bound to its upper bound. The “virtual” assets coordinates in a tick range (Zi, Zi+1] denote

the quantities of asset X and asset Y that define the constant product formula x× y = κ2 in the tick range,

i.e., the coordinates of the points making up the blue segment in Figure 1a. However, the liquidity within

a tick range only serves as counterparty to LT trades when the marginal rate is between the range’s lower

bound and its upper bound. The “real” assets coordinates denote the quantities of asset X and asset Y that

the LP must deposit in the tick range, i.e., the coordinates of the points making up the grey segment in

Figure 1a.

To determine the quantities
(
xi, yi

)
that provide liquidity in the tick range (Zi, Zi+1] in Figure 1a, one

shifts the level function (blue segment) from the “virtual” assets coordinates to the “real” assets coordi-

nates (grey segment), where the quantity of asset Y when Z = Zi+1 is zero, and the quantity of asset

X when Z = Zi is zero. The virtual coordinates of Zi and Zi+1 in Figure 1a are
(
κi

√
Zi, κi

/√
Zi
)

and
(
κi

√
Zi+1, κi

/√
Zi+1

)
, respectively. Next, note that the marginal rate in the tick range (Zi, Zi+1]

obeys the constant product formula, and the algebraic formula to shift the level curve xi yi =
(
κi
)2 is

(xi +∆x) (yi +∆y) =
(
κi
)2. Thus, the quantities provided by the LP verify the key formula(

xi + κi
√
Zi
) (

yi + κi
/√

Zi+1
)
=
(
κi
)2

,

which describes the behaviour of real reserves in the arc corresponding to the tick range
(
Zi, Zi+1

]
.

In this example, when Z ∈ (Zi, Zi+1] , the LP provides the quantities

xi = κi
(
Z1/2 −

(
Zi
)1/2)

and yi = κi
(
Z−1/2 −

(
Zi+1

)−1/2
)

, (11)

which are a function of the LP’s initial wealth α, the marginal rate in the pool, and the range boundaries ZA

and ZB , because

α = xi + Z yi and xi = yi
Z1/2 −

(
Zi
)1/2

Z−1/2 − (Zi+1)−1/2
.

Now, we show how to compute the depth of liquidity in a tick range provided by several LP positions.

Assume a second LP provides liquidity with a different depth κi in the same tick range (Zi, Zi+1]. She

deposits
(
xi, yi

)
so the tick range

(
Zi, Zi+1

]
consists of reserves

(
xi + xi, yi + yi

)
. Use equation (11) to

write the new depth in the tick range resulting from the two liquidity positions as

xi + xi

Z1/2 − (Zi)1/2
= κi + κi .

Thus, one adds the depths of the individual liquidity positions in the same tick range to obtain the total

depth of the liquidity in that tick range. When an LP adds liquidity in a tick range, the depth of the liquidity

increases so the segment of the level function corresponding to the tick range moves up in the virtual asset

coordinates; see Figure 1b. Finally, although there is liquidity taking and liquidity provision activity in the

pool, the depth of each individual position is kept constant if the LP does not deposit or withdraws assets in
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the range. However, liquidity provision activity may change the portion of the pool depth that the LP holds,

e.g., κi/
(
κi + κi

)
in our example; see Chapter 4 in Drissi (2023) for more details.

More generally, let Z be the rate observed in the pool, and let M be the number of LPs with liquidity

resting in the pool. Denote the depth of the jth LP’s liquidity
(
xℓ,u,j , yℓ,u,j

)
posted in the range (Zℓ, Zu] by

κ̃ℓ,u,j . The depth κ̃ℓ,u,j verifies the following key formulae that define the LP provision condition in CPMs

with CL:
xℓ,u,j = 0 and yℓ,u,j = κ̃ℓ,u,j

((
Zℓ
)−1/2 − (Zu)−1/2

)
if Z ≤ Zℓ,

xℓ,u,j = κ̃ℓ,u,j
(
Z1/2 −

(
Zℓ
)1/2) and yℓ,u,j = κ̃ℓ,u,j

(
Z−1/2 − (Zu)−1/2

)
if Zℓ < Z ≤ Zu,

xℓ,u,j = κ̃ℓ,u,j
(
(Zu)1/2 −

(
Zℓ
)1/2) and yℓ,u,j = 0 if Z > Zu .

(12)

Here, if Z ≤ Zℓ, the LP provides only asset Y, i.e., xℓ,u,j = 0, and if Z > Zu, the LP provides only asset

X, i.e., yℓ,u,j = 0.

When an LP withdraws her liquidity, the equations in (12) and the prevailing exchange rate Z determine

the quantities of each asset received by the LP. Here, we refer to the rate Z in the pool when the LP posts

her liquidity as the position rate. In particular, the position rate is the value of the marginal rate Z used in

equation (12) to determine the quantities deposited by the LP in the pool.

LT trading condition. We denote the depth of the liquidity available in the pool in the range (Zi, Zi+1]

between two consecutive ticks by κi,i+1. A pool is characterised by the marginal rate Z and the distribution

of the liquidity across the tick ranges, which are described by the values

κi,i+1 =
∑

j∈{1,··· ,M}

∑
(ℓ,u)∈{1,··· ,N}2

κ̃ℓ,u,j 1Zℓ≤Zi<Zi+1≤Zu , (13)

where M is the number of liquidity providers in the pool, κ̃ℓ,u,jj ≥ 0 is the depth of the liquidity posted

by the jth LP in the range (Zℓ, Zu], and 1 is the indicator function. We refer to the range between two

consecutive ticks that contains the rate Z as the active tick range. The value of the pool depth κ used in the

LT trading condition, which defines the instantaneous and execution rates, is the depth (13) of the liquidity

in the active tick range.5

Consequently, in CPMs with CL, one must discern between two types of depths. First, the pool depth

κ which defines the LT trading condition in a specific tick range, i.e., the constant product formula (1), the

marginal rate (4), and the execution rates (3). Second, the depth κ̃ℓ,u,j of the individual positions held by

LPs for different values of ℓ and u. In pools with CL, the depth κ is a local property, and it is a transformation

of the individual depths κ̃ℓ,u,j , see (13).

5When the rate Z crosses a tick as a result of an LT transaction, the order is executed as two separate transactions; if it crosses
multiple ticks, the order is executed as multiple transactions. In particular, each transaction will use the depth κ of each tick range.
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Fee revenue in CPMs with CL. The transaction fees paid by LTs are distributed amongst LPs in the

same proportion as their contribution to the depth in the active range. More precisely, consider an LP with

liquidity resting in the range (Zℓ, Zu]. If the active tick range is (Zi, Zi+1] and (Zi, Zi+1] ⊂ (Zℓ, Zu], then

for a transaction fee π paid by LTs, the jth LP, who posted depth κ̃ℓ,u,j in (Zℓ, Zu] when the pool’s depth

in the tick is κ = κi,i+1, receives

π̃ℓ,u,j =
κ̃ℓ,u,j

κ
π 1Zℓ<Z≤Zu . (14)

In CPMs without CL, this remuneration is added to the liquidity in the pool because all LPs provide

liquidity in the same range (0,+∞) and they hold portions of the pool in the proportion of their contribution

to it. However, in CPMs with CL, fee income is not automatically reinvested in the pool because LPs can

provide liquidity in various ranges simultaneously, so the fees accrue in a separate account, and are paid

when liquidity is withdrawn.

Similar to Section 2, we derive the continuous-time dynamics of the wealth of LPs (assuming zero fee

revenue), which we study to characterise the predictable losses of LPs. In contrast to CFMs, liquidity pro-

vision in CPMs with CL is strategic. Thus, we derive the wealth dynamics for passive LPs in Subsection

3.2 and for active LPs in Subsection 3.3. Passive LPs do not change the range where they provide liq-

uidity throughout the trading window, and active LPs continuously change the liquidity position. Finally,

Subsection 3.4 uses the wealth dynamics to extend PL to CPMs with CL.

3.2. Wealth dynamics of passive LPs

Consider an LP with trading horizon [0, T ] and with initial wealth α0 > 0 in units of the reference asset X

at the initial time t = 0. The LP deposits quantities (x0, y0) in a fixed range (Zℓ, Zu] that includes Z0 and

withdraws her liquidity at the terminal time T > 0, so the initial value of her position, marked-to-market in

units of X , is α0 = x0 + y0 Z0 .6 We (re)define the processes (xt)t∈[0,T ] and (yt)t∈[0,T ] to denote the LP’s

holdings in the range (Zℓ, Zu] of the pool, the process (αt)t∈[0,T ] = (xt + yt Zt)t∈[0,T ] to denote the value

of the LP’s wealth in units of X , and (Zt)t∈[0,T ] denotes the marginal exchange rate. The depth of the LP’s

position is κ̃0. Recall that κ̃0 is constant throughout [0, T ] because the LP is passive; she does not withdraw

or deposit additional assets and she does not change the width Zu −Zℓ of her liquidity position throughout

the trading window [0, T ].

6In the two cases where liquidity is provided in a range that does not include the rate Z0, the initial holdings are{
x0 = 0 and y0 = α0/Z0 if Z0 ≤ Zℓ ,

x0 = α0 and y0 = 0 if Z0 > Zu .

15



To obtain the initial holdings of the LP in the pool when Z0 ∈ (Zℓ, Zu], one solves
x0 = κ̃0

(
Z

1/2
0 −

(
Zℓ
)1/2)

,

y0 = κ̃0

(
Z

−1/2
0 − (Zu)−1/2

)
,

α0 = x0 + y0 Z0 ,

where κ̃0 is the depth of the LP’s liquidity in the pool, to obtain

x0 = α0

1 +
Z

1/2
0

(
(Zu) 1/2 − Z

1/2
0

)
(Zu) 1/2

(
Z

1/2
0 − (Zℓ) 1/2

)
−1

and y0 =
α0 − x0

Z0
.

At time t ∈ [0, T ], the value of the LP’s holdings in units of the reference asset X is determined by the

equations of the LP provision condition
xt = 0 and yt = κ̃0

((
Zℓ
)−1/2 − (Zu)−1/2

)
if Zt ≤ Zℓ,

xt = κ̃0

(
Z

1/2
t −

(
Zℓ
)1/2) and yt = κ̃0

(
Z

−1/2
t − (Zu)−1/2

)
if Zℓ < Zt ≤ Zu,

xT = κ̃0

(
(Zu)1/2 −

(
Zℓ
)1/2) and yt = 0 if Zt > Zu ,

(15)

where Zt is the marginal rate at time t. We focus on the case where the marginal rate Zt is within the range

(Zℓ, Zu].7 Thus, the change in the value of the position at time t ∈ [0, T ] is

xt + yt Zt − x0 − y0 Z0 = xt + yt Zt − α0 . (16)

Equations (15) and (16) define a payoff in units of X as a function of the marginal rate Zt. Figure

2 shows the relative payoff αt/α0 as a function of the marginal rate for different position ranges when

the position rate is Z0 = 100. Provision of liquidity with wide spreads protects the LP from losses when

Zt ≤ Z0, and facilitates gains when Zt ≥ Z0. Figure 2 shows that the LP’s relative payoff αt/α0 is concave

in the rate ZT .

To obtain simple formulae for the change in the value of the LP’s assets, we characterise the liquidity

position of the LP with new variables
(
δℓ, δu

)
instead of

(
Zℓ, Zu

)
. The values of δℓ and δu are (percentage)

shifts of
√
Z and are defined with the following change of variables:(Zu)1/2 = Z1/2

/
(1− δu/2) ,(

Zℓ
)1/2

= Z1/2
(
1− δℓ/2

)
.

(17)

Note that Zℓ ∈ [0, Z) so δℓ ∈ (0, 2] and Zu ∈ [Z,∞) so δu ∈ [0, 2). Also, we require that Zℓ < Zu so

7Later, we mainly focus on dynamic strategies where the LP targets the rate Zt.
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Figure 2: Payoff (15) for an LP providing liquidity in the ranges [95, 105], [75, 125] and [50, 150], around the position rate
Z0 = 100.

δℓ + δu < δℓ δu/2 .8 For small values of Zu − Zℓ we use the approximation(
Zu − Zℓ

)/
Z =

(
1− δu/2

)−2
−
(
1− δℓ/2

)2
≈ δu + δℓ .

In the remainder of this work, we define the spread of the LP’s position as δℓ + δu = δ. We refer to δ as

the spread because it shares similar properties to those of the spread of a market maker in LOBs. In LOBs,

the spread of an LP refers to the distance between the limit orders posted on both sides of the midprice. In

particular, in LOBs, market makers widen their spread when adverse selection risk increases, i.e., they post

limit orders at deeper levels in the book.

We use (17) to write the change in the value of the assets as a function of the spread of the position and

as a function of changes in the value of Z and of
√
Z. First, use the second equation in (12) and in (17) to

write the depth κ̃0 of the LP’s liquidity as

κ̃0 = 2α0

(
1

δℓ0 + δu0

)
Z

−1/2
0 . (18)

Second, use the definition (17) to write the initial quantities (x0, y0) that the LP deposits in the pool in the

simpler form

x0 =
δℓ0

δℓ0 + δu0
α0 and y0 Z0 =

δu0
δℓ0 + δu0

α0 . (19)

8In the general case where one does not require Z ∈ (Zℓ, Zu], the conditions are δℓ ∈ (−∞, 2], δu ∈ [−∞, 2), and
δℓ + δu < δℓ δu/2.
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Finally, use (15) and (18) to write the quantities (xt, yt) that the LP holds in the pool as

xt = κ̃0

(
Z

1/2
t −

(
Zℓ
)1/2)

,

ytZt = κ̃0

(
Z

1/2
t − Zt (Z

u)−1/2
)
,

=⇒


xt = 2α0

δℓ0+δu0

(
Z

1/2
t

Z
1/2
0

−
(
1− δℓ0

2

))
,

yt Zt = 2α0

δℓ0+δu0

(
Z

1/2
t

Z
1/2
0

− Zt
Z0

(
1− δu0

2

))
.

The change in the value of the LP’s position between times 0 and t is

αt − α0 = xt + yt Zt − α0 = 2α0

(
1

δℓ0 + δu0

)(
2
Z

1/2
t − Z

1/2
0

Z
1/2
0

− Zt − Z0

Z0

(
1− δu0

2

))
, (20)

which shows that the change in the value of the LP’s holdings in the CL pool depends on the change in Z

and
√
Z, and it is inversely proportional to the spread δ of the position; large values of the spread reduce the

risk of the LP’s position. Below, we show that the changes in
√
Z in (20) are the source of PL, which is the

PL component in the wealth of LPs. The dependence of the wealth of LPs on the changes in
√
Z is a direct

consequence of the constant product formula and PL is a consequence of the convexity of the corresponding

level function.

3.3. Wealth dynamics of active LPs

Here, we generalise the analysis of Section 3.2 to any dynamic or passive liquidity provision strategy. More

precisely, we define the shift processes
(
δℓt
)
t∈[0,T ]

and (δut )t∈[0,T ] that determine the dynamic spread of the

strategy that the LP implements, i.e.,(Zu
t )

1/2 = Z
1/2
t / (1− δut /2) ,(

Zℓ
t

)1/2
= Z

1/2
t

(
1− δℓt/2

)
,

where
(
Zℓ
t

)
t∈[0,T ]

and (Zu
t )t∈[0,T ] are the processes that describe the active strategy of the LP throughout

the trading window [0, T ] . Recall that we do not yet assume dynamics for the marginal rate. Let (κt)t∈[0,T ]

be the depth process of the LP’s dynamic position in the pool with initial value κ0 in (18).

We assume that the LP continuously tracks the rate Z so for all t ∈ [0, T ] and that the marginal rate is

within the LP’s range, i.e., Zt ∈ (Zℓ
t , Z

u
t ]. Let

(
xℓ,ut

)
t∈[0,T ]

and
(
yℓ,ut

)
t∈[0,T ]

be the holdings of the LP in

the pool corresponding to the active strategy (δℓt , δ
u
t )t∈[0,T ], where the initial values x0 and y0 are in (19).

Finally, let
(
αℓ,u
t

)
t∈[0,T ]

be the cash process of the LP with initial value α0 = x0 + y0 Z0.

The dynamic strategy
(
δℓt , δ

u
t

)
t∈[0,T ]

of the LP consists in holding xℓ,ut units of the reference asset X,

and yℓ,ut units of the asset Y at each time t in the (dynamic) range (Zℓ
t , Z

u
t ] , where

xℓ,ut =
δℓt

δℓt + δut
αℓ,u
t and yℓ,ut =

δut
Zt

(
δℓt + δut

) αℓ,u
t . (21)
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These holdings correspond to a liquidity position with depth

κ̃t = 2αℓ,u
t

(
1

δℓt + δut

)
Z

−1/2
t .

Now, to obtain the infinitesimal change in the value of the LP’s position, recall that Z is an Ito process

and use Ito’s lemma to write

dZ
1/2
t =

1

2
Z

−1/2
t dZt −

1

8
Z

−3/2
t d ⟨Z,Z⟩t ,

and write the infinitesimal increments of αℓ,u as the continuous-time version of equation (20):

dαℓ,u
t =2αℓ,u

t

(
1

δℓt + δut

)(
2
dZ

1/2
t

Z
1/2
t

− dZt

Zt

(
1− δut

2

))
(22)

=2αℓ,u
t

(
1

δℓt + δut

)(
− 1

4Z2
t

d ⟨Z,Z⟩t +
δut
2

dZt

Zt

)
.

Thus, for any liquidity provision strategy characterised by the shifts
(
δℓt
)
t∈[0,T ]

and (δut )t∈[0,T ], the

dynamics in (22) describe the dynamics of the value of the LP’s holdings in the pool.

3.4. Predictable loss in CPMs with CL

Here, we extend PL to the specific case of CPMs with CL, which requires to account for the spread of the

LP’s position. For simplicity, asset X is the numeraire and the LP values her wealth in terms of X, so only

asset Y drives uncertainty in the LP’s wealth. Similar to PL for CFMs, we consider a self-financed portfolio(
αD
t

)
t∈[0,T ]

that is continuously rebalanced to mimic the LP’s holdings in (21) and invests any additional

cash in a risk-free account with r ≥ 0, and we write

dαD
t = yℓ,ut dZt =

δut
Zt

(
δℓt + δut

) αℓ,u
t dZt +

(
αD
t − αt

)
r dt . (23)

After similar steps to those above, one shows that the process
(
αD
t − αt

)
t∈[0,T ]

is increasing with initial

value αD
0 − α0 = 0. Next, define the PL process

(
PLℓ,u

t

)
t∈[0,T ]

and write

PLℓ,u
t = αℓ,u

t − αD
t = −

∫ t

0

αℓ,u
s

2 (δℓs + δus )Z
2
s

d ⟨Z,Z⟩s︸ ︷︷ ︸
Convexity cost≥ 0

−
∫ t

0

(
αD
t − αt

)
r ds︸ ︷︷ ︸

Opportunity cost≥ 0

≤ 0 . (24)

In contrast to IL, which has been derived for CPMs with CL by Loesch et al. (2021) and Heimbach et al.

(2022) and which shares similar properties to those of IL in CFMs, PL is a predictable and unhedgeable

loss component which is key to measuring the profitability of liquidity provision in liquidity pooling pro-
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tocols with CL. Below, we study the properties of PL when the marginal rate follows geometric Brownian

dynamics with drift.

PL and volatility. Assume that the rate process (Zt)t∈[0,T ] follows the geometric Brownian dynamics

dZt = µZt dt+ σ Zt dWt ,

where the volatility parameter σ is a nonnegative constant, the trend parameter µ is a constant, and (Wt)t∈[0,T ]

is a standard Brownian motion.

For simplicity, consider that the risk-free rate r is zero so the opportunity cost component of PL is zero.

Thus, the dynamics of the value of the LP’s position is

dαℓ,u
t =

αℓ,u
t

δt

(
−σ2

2
dt+ µ δut dt+ σ δut dWt

)
, (25)

where PL in (24) is

PLℓ,u
t = −σ2

2

∫ t

0

αℓ,u
s

δs
ds ≤ 0 . (26)

Clearly, the magnitude of PL incurred by the LP’s position increases with the volatility of the rate Z.

Thus, one expects an optimal liquidity provision model to adjust the spread of the position as a function of

volatility. Moreover, the dynamics in (25) and (26) show how the LP can reduce PL by increasing the spread

of the position in the pool. The spread δ = δℓ + δu is maximal (and equal to 4) when δℓ = 2 and δu = 2,

because it corresponds to the position (Zℓ, Zu] = (0,∞] with the largest spread. If the spread δ is maximal

and the risk-free rate is zero, then PL is minimal (but not zero) and we denote it by PLmin
t . Recall that PL is

given by PLℓ,u
t = αℓ,u

t −αD
t , so when δℓ = δu = 2 and r = 0 we have thatE

[
PLℓ,u

T

]
≤ E

[
PLmin

T

]
, where

E
[
PLmin

T

]
= − σ2

8 µ̂
α0 (exp (µ̂ T )− 1) ≤ 0 , if µ̂ =

µ

2
− σ2

4
̸= 0 ,

and

E
[
PLmin

T

]
= −σ2 α0 T/8 , if µ̂ = 0 .

In contrast to the alternative portfolio αD, the negative component in the trend of the LP’s holdings αℓ,u

scales with the volatility σ; see (25). When volatility becomes arbitrarily high, the LP expects to lose at

least her initial wealth because

lim
σ→+∞

E

[
PLℓ,u

T

]
≤ lim

σ→+∞
E
[
PLmin

T

]
= −α0 .
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PL, drift, and trading horizon. Next, we discuss further the PL incurred by the LP for various ranges of

the drift of the rate and for long trading horizons and with δℓ = δu = 2 and r = 0. When the trend in the

rate Z is µ ≥ σ2 / 2, the value of the holdings αℓ,u in the pool and the value of the alternative portfolio αD

increase because of the positive trend in their dynamics. However, the value of the alternative portfolio αD

increases faster than that of αℓ,u, hence, as the LP’s trading horizon becomes arbitrarily large, we have that

lim
T→+∞

E

[
PLℓ,u

T

]
= −∞ ,

that is, the difference between the value of the alternative portfolio and that of the holdings in the pool is

infinite; see first panel in Figure 3.

On the other hand, if µ < σ2 / 2, we have that

lim
T→+∞

E

[
PLℓ,u

T

]
≤ lim

T→+∞
E
[
PLmin

T

]
=

α0 σ
2

4µ− 2σ2
< 0 .

In particular, the expected minimum PL decreases when the trend is large and negative as both portfolios

αℓ,u and αD incur large losses; see second panel in Figure 3.

Finally, when µ = 0, the expected minimum PL is

E
[
PLmin

T

]
= α0

(
exp

(
−1

4
σ2 T

)
− 1

)
,

in which case the LP expects to lose her initial wealth when volatility or the time horizon becomes arbitrarily

high.
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200

µ ≥ σ2 / 4

αmin
t αmin

t PL

0.0 0.2 0.4 0.6 0.8 1.0

µ ≤ 0

αmin
t αmin

t PL

Figure 3: Simulated paths for the position value αmin
t and the alternative portfolio αmin

t . The position value αmin
t follows the

dynamics in (25) and αmin
t follows the dynamics in (23) when δℓ = δu = 2 and r = 0. Left panel: µ = 0.02% and σ = 2%. Right

panel: µ = −0.02% and σ = 3%.
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4. Empirical analysis of PL in Uniswap v3

This section studies PL in the pool ETH/USDC 0.3% of the CPM Uniswap v3 which implements CL.

Uniswap v3 pools can be created with different values of the LT trading fee, e.g., 0.01%, 0.05%, 0.30%, or

1%, called fee tiers. Additionally, different pools with the same asset pair can coexist if they have different

fee tiers. Once a pool is created, its fee tier does not change. ETH represents Ether, the Ethereum blockchain

native currency, and USDC represents USD coin, a currency fully backed by U.S. Dollars (USD). The fee

paid by LTs in the pool we consider is 0.3% of the trade size; the fee is deducted from the quantity paid into

the pool by the LT and distributed among LPs; see equation (14). Table 1 provides descriptive statistics of

the transaction data (liquidity taking trades and liquidity provision operations) we use.

LT LP
Number of instructions 390,378 158,459

Total USD volume ≈ $ 67.18 ×109 ≈ $ 142.62 ×109

Average trading frequency 136 seconds 337 seconds

Table 1: LT and liquidity provision activity in the ETH/USDC pool between 5 May 2021 and 10 January 2023: count of LT
transactions and LP operations in the pool, size of LT transactions and LP operations in the pool in USD, and average liquidity
taking and provision frequency.

To study the profitability of liquidity provision in the pool that we consider, we select operation pairs

that consist of first providing and then withdrawing the same depth of liquidity κ̃ by the same LP at two

different points in time.9 The operations that we select represent approximately 66% of all LP operations.

Next, for every LP position in the set that we consider, we compute the expected PL as a percentage of the

LP’s initial wealth, i.e., we compute

E

[
PLℓ,u

T

] /
α0 =

1

δ

(
exp

(
−σ2

8
T

)
− 1

)
,

where α0 is the LP’s initial wealth, T is her trading horizon, δ is the (fixed) spread, and σ is the daily

standard deviation based on one month of returns prior to the start date of the LP’s position.10 Table 2

shows the average PL and the realised fee revenue of LPs, and Figure 4 shows the distribution of both

metrics. Clearly, the fee revenue in the pool that we consider does not cover PL.

In an efficient market, one would expect LPs to be driven out of the market unless, everything else being

equal, the fees paid by LTs increase (and gas fees decrease). With the current fee structure and fee levels,

LPs are overexposed to PL during periods of heightened volatility of the rate of the pool. Currently, the

fee structure in CFMs cannot lead to efficient and resilient markets because liquidity will be scarce during

times of high volatility and, in the long term, LPs will withdraw from the market.

9In blockchain data, every transaction is associated to a unique wallet address.
10We assume µ = 0 in (25).
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Average Standard deviation
Number of

transactions per LP 2.61 14.26

PL −0.70% 1.01%

Fee revenue 0.27% 0.38%

Hold time 9.70 days 16.71 days

Spread 38.21% 39.77%

Table 2: LP operations statistics in the ETH/USDC pool with transaction data of 5,156 different LPs between 5 May 2021 and 10
January 2023. Performance includes transaction fees and excludes gas fees. PL and fee revenue are normalised to denote daily
performance.
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Figure 4: Distribution of PL and fee revenue for the historical LP transactions in the ETH/USDC pool.

A potential solution is one or a combination of the following two proposals. First, increase the level of

fixed fees paid by LTs in CFMs or implement a dynamic structure where fees are an increasing function

of the PL; the PL function depends on the volatility of the rate, convexity of the pool’s trading function,

and opportunity cost of the LP’s wealth.11 Second, propose efficient AMM designs beyond CFMs where

LPs express their views on the liquidity taking flow in the price of liquidity so the resulting trading function

accommodates both LPs and LTs; see Cartea et al. (2023b) for research in this direction. Clearly, a change

in fee level and fee structure will affect trading activity in CFMs. In particular, an increase in fees will

impact the demand for liquidity because it will be more expensive for LTs to trade, while, on the other hand,

it will incentivise liquidity provision because compensation will increase, on average — it is a challenging

problem to find a fee structure that provides an equilibrium where activity is not hindered, the market is

resilient, and the rates of the pool are efficient.

11In LOBs, this dynamic adjustment of the fee is endogenous because liquidity providers increase the spread between the best
bid and best ask when volatility of the midprice increases.
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5. Conclusions

This paper discussed the microstructural properties for liquidity takers and providers in CFMs. We intro-

duced predictable loss (PL) as a new measure of loss in liquidity provision activity in CFMs and in CPMs

with CL. Our analysis of Uniswap v3 data showed that LPs trade at a loss in the pool we consider, and that

our strategy significantly improves performance.
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Appendix A. Impermanent loss with stochastic liquidity provision activity

Here, we generalise IL to the case when liquidity provision activity is stochastic. Consider an LP who

deposits quantities (x0, y0) in a CFM pool for the pair of assets X and Y . Similar to Section 2.3, the LP’s

position is self-financed, so she does not deposit or withdraw additional assets throughout a trading horizon

[0, T ]. In contrast to Section 2.3, we model liquidity provision activity as the sum of two Poisson processes

that count liquidity provision and liquidity withdrawal operations in the CFM pool. Let
(
N

deposit
t

)
t∈[0,T ]

be

a Poisson process that models the arrival of LP operations that deposit liquidity, and
(
Nwithdraw

t

)
t∈[0,T ]

be a

Poisson process that models the arrival of LP operations that withdraw liquidity. Both processes have some

(possibly stochastic) intensity.

We assume that the liquidity provision operations are for a fixed liquidity depth ξ > 0 and we assume

that (κ)t∈[0,T ] has the dynamics

dκs = ξ dN
deposit
t − ξ dNwithdraw

t ,

and write IL in (10) as

ILt = αt − αP
t

= −
∫ t

0

(
φκs−ξ (ys−)− φκs−ξ (ys)− φ′

κs−ξ(ys) (ys− − ys)
)
dNwithdraw

s

−
∫ t

0

(
φκs+ξ (ys−)− φκs+ξ (ys)− φ′

κs+ξ(ys) (ys− − ys)
)
dNdeposit

s

−
∫ t

0

(
φκs (ys−)− φκs (ys)− φ′

κs
(ys) (ys− − ys)

)
(1− dNwithdraw

s )

−
∫ t

0

(
φκs (ys−)− φκs (ys)− φ′

κs
(ys) (ys− − ys)

)
(1− dNdeposit

s ) ,

which is always non-positive because φκ is convex for any value of the depth κ .
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