0IECOX09 - Data Analysis
Semester 1 - 2022/2023

Professor: Alexandra SCHAFFAR
Contact information:
Cellular: 0628684398
e-mail: schaffar@univ-tln.fr

Course level: Bachelor (L)
Domain: Business, Economics
Language: English
Number of hours per semester: 36H
ECTS: 6

Course description and objectives

The aim of this course is to introduce the students to the fundamental methods in Data analysis. This course aims to teach students how to present, analyze and interpret data by using the statistical analysis software package R. Following the course will help students to get familiar to the R ecosystem and learn how to use R for the most common data analysis’s projects.

Topics include numerical and graphical summaries of data, qualitative and quantitative univariate analysis, bivariate analysis with the study of the links between two variables, analysis of variance, regression, principal components, factor analysis and cluster analysis.

The course focuses on simple predictive analysis (linear regression or multidimensional analysis, factor approach, principal components approach). The courses take place in the computer lab in order to emphasize on practical aspects of data analysis. However, with the Covid 19 crisis, a distance course has been built allowing interactions with the students.

Prerequisites

Basic knowledge on probabilities and statistics.

Learning outcomes

At the end of the course, students are able to describe and present data, to summarize different types of variables, to analyze the relation between these variables, to practice regression and prediction, to cluster and compare different groups of observations. At the end of the course all students are quite familiar with the R environment.

Assignments and grading

Active class participation is a main feature of the course’s organization. Students work independently on real datasets with data analysis software R. A final exam evaluates the students. The final exam is also on computer. The final exam counts for 50% of the note. Participation and homework counts for another 50% of the note.
Course structure

<table>
<thead>
<tr>
<th>Session</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to R-software</td>
</tr>
<tr>
<td>2</td>
<td>Descriptive statistics</td>
</tr>
<tr>
<td>3</td>
<td>Sampling and statistical inference</td>
</tr>
<tr>
<td>4</td>
<td>Analyzing relationships among two categorical variables</td>
</tr>
<tr>
<td>5</td>
<td>t.test and ANOVA</td>
</tr>
<tr>
<td>6</td>
<td>Correlation and Simple regression</td>
</tr>
<tr>
<td>7</td>
<td>Multiple regression</td>
</tr>
<tr>
<td>8</td>
<td>Logistic regression</td>
</tr>
<tr>
<td>9</td>
<td>Principal components analysis</td>
</tr>
<tr>
<td>10</td>
<td>Correspondence analysis</td>
</tr>
<tr>
<td>11</td>
<td>Clustering</td>
</tr>
<tr>
<td>12</td>
<td>Final Exam</td>
</tr>
</tbody>
</table>

Bibliography

- D.S Moore (2009), *Introduction to the Practice of Statistics*, Freeman, 690 pages

MyCourse

This course is on MyCourse: XXX

Academic integrity

Be aware of the rules in University Paris Dauphine about plagiarism and cheating during exams. All work turned in for this course must be your own work, or that of your own group. Working as part of a group implies that you are an active participant and fully contributed to the output produced by that group.