Dimère et pavages aléatoires

Description du contenu de l'enseignement :
Résumé: Un domino est l’union de deux carrés unité partageant une arête. Étant donné un rectangle m × n, est-il possible de le paver avec des dominos, c’est-à-dire de couvrir sa surface avec des dominos sans qu’il y ait de chevauchements ? Si oui, de combien de façons ? À quoi ressemble un pavage typique ? Qu’en est-il pour un autre domaine obtenu en découpant une portion du réseau Z 2 le long d’arêtes ?
En remplaçant Z 2 par le réseau triangulaire et les dominos par des losanges obtenus en accolant deux triangles adjacents, on obtient un modèle de pavages par losanges. Les pavages par dominos et par losanges sont des exemples de modèles de dimères. Ces modèles étudiés par les physiciens (Fisher, Kasteleyn, Temperley. . . ) dans les années 1960 ont connu un regain d’intérêt dans la communauté mathématique à la fin des années 1990 qui a conduit à des développements impressionants de la théorie (Cohn, Johansson, Kenyon, Okounkov, Propp, Sheffield, Wilson. . . ) Nous étudierons d’abord certains aspects combinatoires relatifs au dénombrement des configurations de ces modèles, ainsi que les relations avec d’autres modèles combinatoires (surfaces aléatoires, arbres couvrants, marches aléatoires à boucles effacées,. . . ).

Ensuite nous étudierons ces modèles sur des réseaux bipartis périodiques planaires infinis, en donnant une classification des mesures de Gibbs ergodiques, et en mettant en relief le lien entre quantités probabilistes et objets algébriques liés à la structure de ces réseaux.

Puis, nous discuterons de la forme typique d’un pavage par dominos d’un grand domaine (phénomène du cercle arctique, forme limite déterministe). Les fluctuations autour du comportement limite macroscopique peuvent être reliées au spectre des grandes matrices aléatoires d’une part, et au champ libre gaussien sans masse d’autre part, impliquant des propriétés d’invariance conforme de ces modèles dans la limite d’échelle.