Data Mining/Machine learning

Ects : 4

Description du contenu de l'enseignement :
Il s'agit d'initier les étudiants à l’apprentissage automatique (machine learning) et à la pratique de la fouille (data mining) et l’extraction de connaissances à partir des grandes masses de données. Il sera illustré par des cas concrets des exemples réalisés en session avec le logiciel R. L’évaluation se fait par examen et par un challenge Kaggle (kaggle.com)
- Introduction
- Objectifs et panorama du datamining et du Machine learning
- Méthodes non supervisées :
Réduction de dimensionnalité
Clustering :
K-means, CAH
Approches probabilistes : EA
Approches spectrales
Application à une segmentation marketing
Application au Text Mining
Règles d’association
-Méthodes supervisées :
Régression logistique
Arbre de Décision
Méthodes à Noyaux
Approches neuronales
Application au scoring