Machine Learning
Ects : 5
Enseignant responsable :
Volume horaire : 36Description du contenu de l'enseignement :
Volume horaire : CM : 18h TD : 18h
- Introduction
- What is Machine Learning
- A simple method: k-nearest neighbors
- Evaluation of classifiers
- Maximum Likelihood and Maximum A posteriori
- Generative Learning
- Maximizing the Likelihood of the examples
- Linear Discriminant Analysis and Naive Bayes
- Discriminative Learning
- Maximizing the likelihood and the a posteriori probability of labels
- Logistic Regression
- Stochastic gradient descent (SGD)
- SGD for generalized linear models
- Beyond linearity: kernelization of the SGD
- Unsupervised Learning
- Learning latent models: the Expectation-Maximization Algorithm
- clustering: k-means, DBscan
- Learning probability density functions: mixtures of gaussians
- Introduction to Bayesian Learning
- Bayesian Linear Regression
- Laplace method
- Introduction to Neural Networks
Pré-requis recommandés :
- Connaissances de base en Statistiques et Algèbre Linéaire
Compétence à acquérir :
Understand most useful machine learning algorithms
Mode de contrôle des connaissances :
CC+Examen
Bibliographie, lectures recommandées
- Friedman, Tibshirani, Hastie. The Elements of Statistical Learning - Chloé Azencott. Introduction au Machine Learning - Cornuéjols, Miclet. Apprentissage artificiel: Concepts et algorithmes