Monte-Carlo methods
Enseignant responsable :
Volume horaire : 40.5Description du contenu de l'enseignement :
Volume horaire détaillé : CM : 10h30 TD : 6h00 TP : 24h00
- Introduction de la méthode de Monte-Carlo
- Méthodes de simulation de variables aléatoires
- Techniques de réduction de variance
Compétence à acquérir :
L’objectif de ce cours est d’introduire les méthodes dites de Monte-Carlo. Ces méthodes sont utilisées pour calculer des espérances (et par extension des intégrales) par simulation de variables aléatoires. La simplicite´ de la me´thode, sa flexibilite´ et son efficacite´ pour les proble`mes en grande dimension en font un outil inte´ressant pour des domaines d’applications variés allant de la physique à la finance de marché. L’objectif de ce cours est non seulement de fournir les bases théoriques des méthodes de Monte-Carlo, mais aussi de fournir les outils pour leur utilisation pratique.
Mode de contrôle des connaissances :
- Examen écrit (70% de la note finale)
- Contrôle continu (30% de la note finale). Le contrôle continu se compose d'un projet à la maison et d'un TP noté en séance, tous deux à réaliser avec le language de programmation R.
Bibliographie, lectures recommandées
- C.P.Robert and G.Casella. Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer-Verlag New York, 2 edition, 2004.
- B. Ycart. Modèles et Algorithmes Markoviens, volume 39 of Mathématiques et Applications. Springer-Verlag Berlin Heidelberg, 2002.