Modèles de taux d'intérêt
Enseignant responsable :
- SANDRINE HENON
Description du contenu de l'enseignement :
Découvrir et se familiariser avec l'utilisation des modèles de taux d'intérêt à temps continu.
- Quelques outils de calcul stochastique : rappels. Formule d'Ito Changement de probabilité : définition, théorème de Girsanov, formule pour les espérances conditionnelles. - Généralités sur les taux d'intérêt : Définitions : zéro-coupon, taux forward instantanés, taux court (ou taux spot) Modèles simples du taux court au travers de deux exemples : modèles de Vasicek et de CIR (Cox, Ingersoll et Ross). Modèles de Heath, Jarrow, Morton (HJM), probabilité risque-neutre, dynamique des zéro-coupon. - Produits de taux classiques. Les sous-jacents : taux forward, swap, taux swap. Changement de numéraire et probabilités forward. Produits vanilles, les caplets et les swaptions. Formule de Black, phénomènes associés à la courbe de la volatilités. - Modèle LGM à un facteur. - Modèle BGM (Brace, Gatarek et Musiela) / Jamishidian. - Modèles à volatilité stochastique : Définition. Modèle SABR. Modèle d'Heston
Pré-requis obligatoires :
Cours intitulé "Mouvement Brownien" de M1. En particulier, les notions de calcul stochastique, modèles de Black and Scholes, formule d'Ito, Feynman-Kac. Méthode de Monte-Carlo, schéma d'Euler.
Compétence à acquérir :
Ce cours est consacré aux modèles de taux d'intérêt à temps continu. Au travers de nombreux exemples, on décrit leur utilisation pour évaluer les produits dérivés sur taux d'intérêt.
Mode de contrôle des connaissances :
Examen final