Panneau de gestion des cookies
NOTRE UTILISATION DES COOKIES
Des cookies sont utilisés sur notre site pour accéder à des informations stockées sur votre terminal. Nous utilisons des cookies techniques pour assurer le bon fonctionnement du site ainsi qu’avec notre partenaire des cookies fonctionnels de sécurité et partage d’information soumis à votre consentement pour les finalités décrites. Vous pouvez paramétrer le dépôt de ces cookies en cliquant sur le bouton « PARAMETRER » ci-dessous.

Graph analytics

Ects : 4

Enseignant responsable :

Volume horaire : 24

Description du contenu de l'enseignement :

The objective of this course course is to give students an overview of the field of graph analytics. Since graphs form a complex and expressive data type, we need methods for representing graphs in databases, manipulating, querying, analyzing and mining them. Moreover, graph applications are very diverse and need specific algorithms. The course presents new ways to model, store, retrieve, mine and analyze graph-structured data and some examples of applications. Lab sessions are included allowing students to practice graph analytics: modeling a problem into a graph database and performing analytical tasks over the graph in a scalable manner.

Program • Graph analytics – Networks properties and models – Link Analysis : PageRank and its variants – Community detection • Frameworks for parallel graph analytics – Pregel – a model for parallel-graph computing – GraphX Spark – unifying graph- and data – parallel computing • Machine learning with graphs • Applications : process mining and analysis Practical work : graph analytics with GraphX and Neo4J

Compétence à acquérir :

Modeling a problem into a graph model and performing analytical tasks over the graph in a scalable manner.

Bibliographie, lectures recommandées

References

Ian Robinson, Jim Weber, Emil Eifrem, Graph Databases, Editeur : O'Reilly (4 juin 2013), ISBN-10: 1449356265

Eric Redmond, Jim R. Wilson, Seven Databases in Seven Weeks - A Guide to Modern Databases and the NoSQL Movement, Publisher: Pragmatic Bookshelf

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale graph processing, SIGMOD '10, ACM, New York, NY, USA, 135-146

Xin, Reynold & Crankshaw, Daniel & Dave, Ankur & Gonzalez, Joseph & J. Franklin, Michael & Stoica, Ion. (2014). GraphX: Unifying Data-Parallel and Graph-Parallel Analytics.

Michael S. Malak and Robin East, Spark GraphX in Action, Manning, June 2016