Panneau de gestion des cookies
NOTRE UTILISATION DES COOKIES
Des cookies sont utilisés sur notre site pour accéder à des informations stockées sur votre terminal. Nous utilisons des cookies techniques pour assurer le bon fonctionnement du site ainsi qu’avec notre partenaire des cookies fonctionnels de sécurité et partage d’information soumis à votre consentement pour les finalités décrites. Vous pouvez paramétrer le dépôt de ces cookies en cliquant sur le bouton « PARAMETRER » ci-dessous.

Monte Carlo Simulations in finance - MathLab

Enseignant responsable :

  • IRINA KORTCHEMSKI

Volume horaire : 21

Description du contenu de l'enseignement :

Lecture 1 and 2: Introduction to MATLAB. Tutorial with numerical optimization of Rosenbrock’s function and simulation of the Brownien Motion. Markowitz portfolio optimization.

 

Lecture 3: Binomial options pricing model. European, American, Butterfly and Barrier Knock - Out options. Simulation of a Binomial tree and assets trajectories.

 

Lecture 4: Black and Scholes Model. Monte-Carlo method for option valuation. European option. Correlated Brownian motions. Basket et Exchange options.

 

Lecture 5: Black and Scholes Model. Strongly Path-dependent options. Asian option. Lookback and Choosers. Stochastic volatility models. Euler-Maruyama approximation of Stochastic Differential Equations. Option and asset pricing in the Heston model.

 

Lecture 6 and 7: Merton Model. Poisson distribution. Simulation of assets trajectories with jumps. Option pricing in the Merton model.

Pré-requis recommandés :

The notions of stochastic calculus, Black and Scholes models, Ito's formula.

Coefficient : 1

Compétence à acquérir :

The students will learn important principles of implementation of financial models and master algorithms of evaluation of different types of derivative securities: European, American, standard, barrier and path dependent options on stocks.This course gives a comprehensive introduction to Monte Carlo and finite difference methods for pricing financial derivatives. At the end of the course, the student should have a thorough understanding of the theory behind Monte Carlo methods, be able to implement them for a range of applications, and have an appreciation of some of the current research areas.

Mode de contrôle des connaissances :

Control of Knowledge: Defense of a Project.

Bibliographie, lectures recommandées

Reading List: 1) S E Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer 2004. 2) P Glasserman, Monte Carlo Methods in Financial Engineering, Springer-Verlag, 2004. 3) P Wilmott, S D Howison and J Dewynne, Mathematics of Financial Derivatives, CUP, 1995.