CEREMADE
De Tilière Béatrice
Professeure des universités
Biographie
Béatrice de Tilière est Professeur de Mathématiques à l'Université Paris-Dauphine. Après un diplôme d'Ingénieure mathématicienne à l'Ecole Polytechnique Fédérale de Lausanne (EPFL), et une année de cours post-grades à UC Berkeley, elle a obtenu son doctorat de l'Université d'Orsay (Paris-Saclay). Ses recherches portent sur la mécanique statistique, en particulier les sujets reliés au modèle de dimères. Elle a été membre junior de l'Institut Universitaire de France (2017-2022) et a repris en 2020 la responsabilité du programme doctoral de Mathématiques de Dauphine.
Publications
Articles
Affolter N., de Tilière B., Melotti P. (2024), The Schwarzian octahedron recurrence (dSKP equation) II: geometric systems, Discrete and Computational Geometry, p. 45
Affolter N., de Tilière B., Melotti P. (2023), The Schwarzian octahedron recurrence (dSKP equation) I : explicit solutions, Combinatorial Theory, vol. 3, n°2, p. 1-58
Boutillier C., Cimasoni D., de Tilière B. (2023), Elliptic dimers on minimal graphs and genus 1 Harnack curves, Communications in Mathematical Physics, vol. 400, p. 1071–1136
Boutillier C., Cimasoni D., de Tilière B. (2023), Minimal bipartite dimers and higher genus Harnack curves, Probability and Mathematical Physics, vol. 4, n°1, p. 151-208
Boutillier C., Cimasoni D., de Tilière B. (2022), Isoradial immersions, Journal of Graph Theory, vol. 99, n°4, p. 715-757
Boutillier C., de Tilière B., Raschel K. (2019), The Z-invariant Ising model via dimers, Probability Theory and Related Fields, vol. 174, n°1-2, p. 235-305
Boutillier C., de Tilière B., Raschel K. (2017), The Z-invariant massive Laplacian on isoradial graphs, Inventiones Mathematicae, vol. 208, n°1, p. 109-189
de Tilière B. (2016), Bipartite dimer representation of squares of 2d-Ising correlations, Annales de l’Institut Henri Poincaré D, vol. 3, n°2, p. 121-138
de Tilière B. (2016), Critical Ising model and spanning trees partition functions, Annales Henri Poincaré, vol. 52, n°3, p. 1382-1405
de Tilière B. (2014), Principal minors Pfaffian half-tree theorem, Journal of Combinatorial Theory, Series A, vol. 124, n°May 2014, p. 1-40
Boutillier C., de Tilière B. (2014), Height representation of XOR-Ising loops via bipartite dimers, Electronic Journal of Probability, vol. 19, p. 1-33
de Tilière B. (2013), From Cycle Rooted Spanning Forests to the Critical Ising Model: an Explicit Construction, Communications in Mathematical Physics, vol. 319, n°1, p. 69-110
Boutillier C., de Tilière B. (2011), The Critical Z-Invariant Ising Model via Dimers: Locality Property, Communications in Mathematical Physics, vol. 301, n°2, p. 473-516
Boutillier C., de Tilière B. (2010), The critical Z-invariant Ising model via dimers: the periodic case, Probability Theory and Related Fields, vol. 147, n°3-4, p. 379-413
Boutillier C., de Tilière B. (2009), Loops statistics in the toroidal honeycomb dimer model, Annals of Probability, vol. 37, n°5, p. 1747-1777
Bolthausen E., Caravenna F., de Tilière B. (2009), The quenched critical point of a diluted disordered polymer model, Stochastic Processes and their Applications, vol. 119, n°5, p. 1479-1504
de Tilière B. (2007), Scaling limit of isoradial dimer models and the case of triangular quadri-tilings, Annales Henri Poincaré, vol. 43, n°6, p. 729-750
de Tilière B. (2007), Quadri-tilings of the Plane, Probability Theory and Related Fields, vol. 137, n°3-4, p. 487-518
de Tilière B. (2007), Partition function of periodic isoradial dimer models, Probability Theory and Related Fields, vol. 138, n°3-4, p. 451-462
Ouvrages
Boutillier C., de Tilière B., Raschel K. (2023), Topics in statistical mechanics, Paris: Société mathématique de France, XXII-230 p.
Chapitres d'ouvrage
Boutillier C., de Tilière B. (2012), Statistical Mechanics on Isoradial Graphs, in Jean-Dominique Deuschel, Barbara Gentz, Wolfgang König, Max von Renesse, Michael Scheutzow, Uwe Schmock, Probability in Complex Physical Systems Springer, p. 512
Prépublications / Cahiers de recherche
Boutillier C., de Tilière B. (2024), Fock's dimer model on the Aztec diamond, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 51 p.