CEREMADE

MONNEAU REGIS

Chercheur associé

Send an email

Office : B606


Publications

Articles

Cardaliaguet P., Forcadel N., MONNEAU R. (2024), A class of germs arising from homogenization in traffic flow on junctions, Journal of Hyperbolic Differential Equations, vol. 21, n°02, p. 189-254

Forcadel N., Imbert C., MONNEAU R. (2024), Coercive Hamilton–Jacobi equations in domains: the twin blow-ups method, Comptes rendus. Mathématique, vol. 362, n°G8, p. 829-839

Cardaliaguet P., Forcadel N., Girard T., MONNEAU R. (2024), Conservation laws and Hamilton-Jacobi equations on a junction: The convex case, Discrete and Continuous Dynamical Systems. Series A, vol. 44, n°12, p. 3920-3961

Forcadel N., Imbert C., MONNEAU R. (2024), Nonconvex coercive Hamilton–Jacobi equations :Guerand’s relaxation revisited, Pure and Applied Analysis, vol. 6, n°4, p. 1055-1089

Zidani H., Imbert C., Monneau R. (2013), A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM. Control, Optimisation and Calculus of Variations, vol. 19, n°1, p. 129-166

Al Haj M., Monneau R., Forcadel N. (2013), Existence and uniqueness of traveling waves for fully overdamped Frenkel-Kontorova models, Archive for Rational Mechanics and Analysis, vol. 210, n°1, p. 45-99

Imbert C., Forcadel N., Monneau R. (2012), Uniqueness and existence of spirals moving by forced mean curvature motion, Interfaces and Free Boundaries, vol. 14, n°3, p. 365-400

Imbert C., Monneau R., Forcadel N. (2012), Homogenization of accelerated Frenkel-Kontorova models with $n$ types of particles, Transactions of the American Mathematical Society, n°364, p. 6187-6227

Carlini E., Forcadel N., Monneau R. (2011), A Generalized Fast Marching Method for Dislocation Dynamics, SIAM Journal on Numerical Analysis, vol. 49, n°6, p. 2470-2500

Dolbeault J., Monneau R., Blanchet A. (2010), Erratum to “On the continuity of the time derivative of the solution to the parabolic obstacle problem with variable coefficients”: [J. Math. Pures Appl. 85 (3) (2006) 371–414], Journal de mathématiques pures et appliquées, vol. 94, n°4, p. 447-449

Forcadel N., Imbert C., Monneau R. (2009), Homogenization of some particle systems with two-body interactions and of the dislocation dynamics, Discrete and Continuous Dynamical Systems, vol. 23, n°3, p. 785-826

Ibrahim H., Monneau R. (2009), On a parabolic logarithmic Sobolev inequality, Journal of Functional Analysis, vol. 257, n°3, p. 903-930

Forcadel N., Imbert C., Monneau R. (2009), Homogenization of fully overdamped Frenkel-Kontorova models, Journal of Differential Equations, vol. 246, p. 1057-1097

Monneau R., Dolbeault J., Benguria R. (2009), Harnack inequalities and discrete - continuum error estimates for a chain of atoms with two - body interactions, Journal of Statistical Physics, vol. 134, n°1, p. 27-51

Ibrahim H., El Hajj A., Monneau R. (2009), Dislocation dynamics: from microscopic models to macroscopic crystal plasticity, Continuum Mechanics and Thermodynamics, vol. 21, n°2, p. 109-123

Ibrahim H., Monneau R., El Hajj A. (2009), Homogenization of dislocation dynamics, IOP Conference Series. Materials Science and Engineering, vol. 3, n°Paper 012023

Forcadel N., Monneau R., Imbert C. (2008), Recent results on dislocation dynamics and homogenization, Proceedings in Applied Mathematics and Mechanics, vol. 7, n°1, p. 1040203-1040204

Ley O., Monneau R., Barles G., Cardaliaguet P. (2008), Global Existence Results and Uniqueness for Dislocation Equations, SIAM Journal on Mathematical Analysis, vol. 40, n°1, p. 44-69

Monneau R., Imbert C. (2008), Homogenization of First-Order Equations with (u/ε) -Periodic Hamiltonians. Part I: Local Equations, Archive for Rational Mechanics and Analysis, vol. 187, n°1, p. 49-89

Blanchet A., Monneau R., Dolbeault J. (2006), On the continuity of the time derivative of the solution to the parabolic obstacle problem with variable coefficients, Journal de mathématiques pures et appliquées, vol. 85, n°3, p. 371-414

Dolbeault J., Felmer P., Monneau R. (2005), Symmetry and non-uniformly elliptic operators, Differential and Integral Equations, vol. 18, n°2, p. 141-154

Cardaliaguet P., Alvarez O., Monneau R. (2005), Existence and uniqueness for dislocation dynamics with nonnegative velocity, Interfaces and Free Boundaries, vol. 7, n°4, p. 415-434

Benguria R., Monneau R., Catto I., Dolbeault J. (2004), Oscillating minimizers of a fourth order problem invariant under scaling, Journal of Differential Equations, vol. 205, n°1, p. 253-269

Dolbeault J., Monneau R. (2003), On a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two, Annali della Scuola Normale Superiore di Pisa, vol. 2, n°1, p. 181-197

Dolbeault J., Monneau R. (2002), Convexity estimates for nonlinear elliptic equations and application to free boundary problems, Annales de l'Institut Henri Poincaré (C) Analyse non linéaire, vol. 19, n°6, p. 903-926

Chapitres d'ouvrage

Monneau R., Blanchet A., Dolbeault J. (2005), On the one-dimensional parabolic obstacle problem with variable coefficients, in Brighi, Bernhard, Elliptic and parabolic problems : A Special Tribute to the Work of Haim Brezis, Basel: Springer, p. 59-66

Prépublications / Cahiers de recherche

MONNEAU R. (2024), Structure of Riemann solvers on networks, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 166 p.

Forcadel N., Imbert C., MONNEAU R. (2024), Germs for scalar conservation laws: the Hamilton-Jacobi equation point of view, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 21 p.

Forcadel N., Imbert C., MONNEAU R. (2024), The twin blow-up method for Hamilton-Jacobi equations in higher dimension, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 23 p.

MONNEAU R. (2023), Strictly convex Hamilton-Jacobi equations: strong trace of the derivatives in codimension ≥ 2, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 34 p.

Rouy E., Monneau R., Imbert C. (2007), Homogenization of First-Order Equations with (u/ε) -Periodic Hamiltonians. Part II: application to dislocations dynamics, Paris, Université Paris-Dauphine, 30 p.

Back to search