Syllabus
UE Obligatoires S1
- Discrete processes
Discrete processes
Ects : 4
Lecturer :
Total hours : 37.5
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Espérance conditionnelle. Martingales. Stratégies. Convergence des martingales. Arrêt optionnel. Chaînes de Markov.
Learning outcomes :
Introduction à la modélisation aléatoire dynamique.
- Linear models and generalizations
Linear models and generalizations
Ects : 4
Lecturer :
- KATIA MULLER MEZIANI
Total hours : 45
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30 TP : 7h30
Modèle linéaire (gaussien et non gaussien) : estimateur des moindres carrés ordinaire, intervalles de confiance et de prédiction, test de Student et test de Fisher.
Critères de sélection de modèle (Cp de Mallows, AIC, BIC) et procédures de sélection de variables (forward, backward).
Analyse de la variance à un et deux facteurs.
Modèles linéaires généralisés, formalisation, modèles logit, probit, tobit et généralisations.
Recommended prerequisites :
Estimation et tests statistique.
Require prerequisites :
Algèbre linéaire.
Learning outcomes :
Ce cours vise à décrire la construction et l’analyse des divers modèles paramétriques de régression linéaire et non-linéaire reliant un groupe de variables explicatives à une variable expliquée. Il inclut également des TP en R.
Assessment :
Partiel, examen et projet.
- Optimization
Optimization
Ects : 4
Lecturer :
Total hours : 37.5
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Optimisation dans R^n (cas général et cas convexe). Optimisation sous contraintes d’égalités et d’inégalités : KKT, cas convexe, lemme de Farkas, dualité, méthodes numériques (gradient projeté, Usawa). Programmation dynamique en temps discret (problèmes en horizon fini, problèmes en horizon infini avec coût escompté). Calcul des variations. Introduction à la théorie du contrôle optimal (principe de Pontriaguine, équation de Hamilton-Jacobi-Bellman).
Recommended prerequisites :
Optimisation dans R^n sans contraintes.
Learning outcomes :
L’objectif de ce cours est d'étudier, d’une part, l’optimisation sous contraintes dans R^n et, d’autre part, les techniques de programmation dynamique déterministe qui sont fondamentales dans les applications.
Assessment :
Examen sur table (mi-semestre et fin de semestre).
- Analyse des données
Analyse des données
Ects : 4
Lecturer :
- DENIS PASQUIGNON
Total hours : 37.5
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Généralités sur l’analyse des données, tableaux, problèmes de codages. Nuages de points et caractéristiques associées. Analyse en Composantes Principales. Analyse Factorielle sur Tableaux de Distances. Analyse Factorielle des Correspondances. Analyse des Correspondances Multiples.
Learning outcomes :
Donner les notions de base de l’analyse des données.
Assessment :
Partiel au milieu du semestre et un examen final.
Bibliography-recommended reading
"Probabilités, analyse de données et Statistique" Gilbert Saporta, éditions Technip
- Anglais 1
Anglais 1
Ects : 2
Lecturer :
- VERONIQUE BOURREL
Total hours : 19.5
Overview :
Contenu : professionnels, culturels, d’actualité et de société
Forme : débats, jeux de rôles, quiz et activités ludiques
Méthodologie : prise de parole en public, travail sur l’expression orale
Thématiques au programme: Inclusion & exclusion, Thinking outside the box
Recommended prerequisites :
Une volonté de s’investir et un niveau d’anglais correct
Require prerequisites :
Une attitude professionnelle (ponctualité et sérieux)
Learning outcomes :
Savoir s’exprimer à l’oral
Améliorer ses compétences langagières et communicationnelles
Enrichir son vocabulaire
Développer sa créativité
Travailler en équipe
Assessment :
100% contrôle continu
3 notes : jeu de rôles +présentation orale + note d’oral
UE Optionnelles
- Pré-rentrée mise à niveau : Analyse
Pré-rentrée mise à niveau : Analyse
Lecturer :
- Pré-rentrée mise à niveau : statistique
Pré-rentrée mise à niveau : statistique
Lecturer :
- KATIA MULLER MEZIANI
Total hours : 12
Overview :
- Révision des programmes de probabilité-statistique du L1 au L3. - Révision des grands résultats d’analyse de L3 : Topologie dans les espaces métriques, espaces vectoriels normés, espaces de Banach (Riesz, critère de sommabilité). Théorie de la mesure e
- Actuariat 1
Actuariat 1
Ects : 4
Lecturer :
- QUENTIN GUIBERT
- CLAIRE LAMON
Total hours : 37.5
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Présenter les notions et mécanismes de base de l’assurance, typologie des modèles. Principe de calculs des primes et comparaison des risques. Modélisation des risques non-vie (la fréquence des sinistres, les coûts des sinistres). Modélisation des risques vie (probabilité viagère, valeur actuelle probable). Éléments sur la modélisation du montant cumulé des sinistres (mutualisation et agrégation).
Learning outcomes :
Présenter les méthodes quantitatives de base dont dispose l’assureur pour la modélisation, la tarification et l’évaluation prévisionnelle des dépenses d’indemnisation des sinistres. Ces méthodes permettent, notamment de déterminer le montant des primes et de décider le montant de capital au risque.
Assessment :
1 examen terminal et 1 examen partiel
- Portfolio management
Portfolio management
Ects : 4
Lecturer :
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Théorie de Markowitz pour le choix de portefeuille (critère moyenne-variance) ; notion de portefeuille efficient ; mesure de risque et Value at Risk.
Portefeuille de Marché et Portefeuille Tangent, théorème des deux fonds, modèle du CAPM, équation de la Security Market Line et beta.
Les différents indicateurs : ratio de Sharpe, alpha, ratio de Treynor.
La décompostion et rémunération du risque: modèles à facteurs, modèle de Fama-French, modèles APT.
Analyse factorielle.
Recommended prerequisites :
connaissances en optimisation convexe sous contraintes affines
Require prerequisites :
connaissances des vecteurs gaussiens, algèbre linéaire de base, calcul différentiel.
Learning outcomes :
Ce cours est une introduction aux méthodes quantitatives en gestion de portefeuille.
Assessment :
Partiel, Examen, potentiellement projet en Python
Bibliography-recommended reading
"Quantitative Portfolio Management", Pierre Brugière, Springer 2020
- Microéconomie : Théorie des contrats
Microéconomie : Théorie des contrats
Ects : 4
Lecturer :
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Rappel de micro-économie : notions de décision (indifférence, dominance stochastique et aversion au risque). Notions d’équilibres et optima de Pareto, quelques notions utiles venant de la théorie des jeux. Modèles d’Akerlof et de Spence. Modèle principal agent : sélection adverse et modèle d’action cachée. Synthèse sur le rôle de l’asymétrie d’information.
Learning outcomes :
Étude des asymétries d’information et de la théorie des contrats.
- Monte-Carlo methods
Monte-Carlo methods
Ects : 4
Lecturer :
- CHRISTIAN ROBERT
Total hours : 40.5
Overview :
Volume horaire détaillé : CM : 10h30 TD : 6h00 TP : 24h00
- Introduction de la méthode de Monte-Carlo
- Méthodes de simulation de variables aléatoires
- Techniques de réduction de variance
Coefficient : 4 ECTS
Learning outcomes :
L’objectif de ce cours est d’introduire les méthodes dites de Monte-Carlo. Ces méthodes sont utilisées pour calculer des espérances (et par extension des intégrales) par simulation de variables aléatoires. La simplicite´ de la me´thode, sa flexibilite´ et son efficacite´ pour les proble`mes en grande dimension en font un outil inte´ressant pour des domaines d’applications variés allant de la physique à la finance de marché. L’objectif de ce cours est non seulement de fournir les bases théoriques des méthodes de Monte-Carlo, mais aussi de fournir les outils pour leur utilisation pratique.
Assessment :
- Examen écrit (70% de la note finale)
- Contrôle continu (30% de la note finale). Le contrôle continu se compose d'un projet à la maison et d'un TP noté en séance, tous deux à réaliser avec le language de programmation R.
Bibliography-recommended reading
- C.P.Robert and G.Casella. Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer-Verlag New York, 2 edition, 2004.
- B. Ycart. Modèles et Algorithmes Markoviens, volume 39 of Mathématiques et Applications. Springer-Verlag Berlin Heidelberg, 2002.
- Série temporelles
Série temporelles
Ects : 4
Lecturer :
Total hours : 37.5
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Échantillonnage Quantification Compression sans perte et correction d’erreurs L’algorithme FFT Filtres numériques Conception de filtres numériques Compression avec perte, introduction au MP3
Learning outcomes :
Comprendre les mathématiques du filtrage et du traitement de l’information et les principes de la numérisation des signaux. Avoir une vision globale des techniques du traitement de l’information.
UE fondamentale
- Discrete processes
Discrete processes
Ects : 4
Lecturer :
Total hours : 37.5
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Espérance conditionnelle. Martingales. Stratégies. Convergence des martingales. Arrêt optionnel. Chaînes de Markov.
Learning outcomes :
Introduction à la modélisation aléatoire dynamique.
- Linear models and generalizations
Linear models and generalizations
Ects : 4
Lecturer :
- KATIA MULLER MEZIANI
Total hours : 45
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30 TP : 7h30
Modèle linéaire (gaussien et non gaussien) : estimateur des moindres carrés ordinaire, intervalles de confiance et de prédiction, test de Student et test de Fisher.
Critères de sélection de modèle (Cp de Mallows, AIC, BIC) et procédures de sélection de variables (forward, backward).
Analyse de la variance à un et deux facteurs.
Modèles linéaires généralisés, formalisation, modèles logit, probit, tobit et généralisations.
Recommended prerequisites :
Estimation et tests statistique.
Require prerequisites :
Algèbre linéaire.
Learning outcomes :
Ce cours vise à décrire la construction et l’analyse des divers modèles paramétriques de régression linéaire et non-linéaire reliant un groupe de variables explicatives à une variable expliquée. Il inclut également des TP en R.
Assessment :
Partiel, examen et projet.
- Optimization
Optimization
Ects : 4
Lecturer :
Total hours : 37.5
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Optimisation dans R^n (cas général et cas convexe). Optimisation sous contraintes d’égalités et d’inégalités : KKT, cas convexe, lemme de Farkas, dualité, méthodes numériques (gradient projeté, Usawa). Programmation dynamique en temps discret (problèmes en horizon fini, problèmes en horizon infini avec coût escompté). Calcul des variations. Introduction à la théorie du contrôle optimal (principe de Pontriaguine, équation de Hamilton-Jacobi-Bellman).
Recommended prerequisites :
Optimisation dans R^n sans contraintes.
Learning outcomes :
L’objectif de ce cours est d'étudier, d’une part, l’optimisation sous contraintes dans R^n et, d’autre part, les techniques de programmation dynamique déterministe qui sont fondamentales dans les applications.
Assessment :
Examen sur table (mi-semestre et fin de semestre).
- Analyse des données
Analyse des données
Ects : 4
Lecturer :
- DENIS PASQUIGNON
Total hours : 37.5
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Généralités sur l’analyse des données, tableaux, problèmes de codages. Nuages de points et caractéristiques associées. Analyse en Composantes Principales. Analyse Factorielle sur Tableaux de Distances. Analyse Factorielle des Correspondances. Analyse des Correspondances Multiples.
Learning outcomes :
Donner les notions de base de l’analyse des données.
Assessment :
Partiel au milieu du semestre et un examen final.
Bibliography-recommended reading
"Probabilités, analyse de données et Statistique" Gilbert Saporta, éditions Technip
UE de majeure Statistiques S1
- Série temporelles
Série temporelles
Ects : 4
Lecturer :
Total hours : 37.5
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Échantillonnage Quantification Compression sans perte et correction d’erreurs L’algorithme FFT Filtres numériques Conception de filtres numériques Compression avec perte, introduction au MP3
Learning outcomes :
Comprendre les mathématiques du filtrage et du traitement de l’information et les principes de la numérisation des signaux. Avoir une vision globale des techniques du traitement de l’information.
- Monte-Carlo methods
Monte-Carlo methods
Ects : 4
Lecturer :
- CHRISTIAN ROBERT
Total hours : 40.5
Overview :
Volume horaire détaillé : CM : 10h30 TD : 6h00 TP : 24h00
- Introduction de la méthode de Monte-Carlo
- Méthodes de simulation de variables aléatoires
- Techniques de réduction de variance
Coefficient : 4 ECTS
Learning outcomes :
L’objectif de ce cours est d’introduire les méthodes dites de Monte-Carlo. Ces méthodes sont utilisées pour calculer des espérances (et par extension des intégrales) par simulation de variables aléatoires. La simplicite´ de la me´thode, sa flexibilite´ et son efficacite´ pour les proble`mes en grande dimension en font un outil inte´ressant pour des domaines d’applications variés allant de la physique à la finance de marché. L’objectif de ce cours est non seulement de fournir les bases théoriques des méthodes de Monte-Carlo, mais aussi de fournir les outils pour leur utilisation pratique.
Assessment :
- Examen écrit (70% de la note finale)
- Contrôle continu (30% de la note finale). Le contrôle continu se compose d'un projet à la maison et d'un TP noté en séance, tous deux à réaliser avec le language de programmation R.
Bibliography-recommended reading
- C.P.Robert and G.Casella. Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer-Verlag New York, 2 edition, 2004.
- B. Ycart. Modèles et Algorithmes Markoviens, volume 39 of Mathématiques et Applications. Springer-Verlag Berlin Heidelberg, 2002.
UE complémentaire
- Anglais 1
Anglais 1
Ects : 2
Lecturer :
- VERONIQUE BOURREL
Total hours : 19.5
Overview :
Contenu : professionnels, culturels, d’actualité et de société
Forme : débats, jeux de rôles, quiz et activités ludiques
Méthodologie : prise de parole en public, travail sur l’expression orale
Thématiques au programme: Inclusion & exclusion, Thinking outside the box
Recommended prerequisites :
Une volonté de s’investir et un niveau d’anglais correct
Require prerequisites :
Une attitude professionnelle (ponctualité et sérieux)
Learning outcomes :
Savoir s’exprimer à l’oral
Améliorer ses compétences langagières et communicationnelles
Enrichir son vocabulaire
Développer sa créativité
Travailler en équipe
Assessment :
100% contrôle continu
3 notes : jeu de rôles +présentation orale + note d’oral
UE Optionnelles majeure Statistiques S1
- Actuariat 1
Actuariat 1
Ects : 4
Lecturer :
- QUENTIN GUIBERT
- CLAIRE LAMON
Total hours : 37.5
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Présenter les notions et mécanismes de base de l’assurance, typologie des modèles. Principe de calculs des primes et comparaison des risques. Modélisation des risques non-vie (la fréquence des sinistres, les coûts des sinistres). Modélisation des risques vie (probabilité viagère, valeur actuelle probable). Éléments sur la modélisation du montant cumulé des sinistres (mutualisation et agrégation).
Learning outcomes :
Présenter les méthodes quantitatives de base dont dispose l’assureur pour la modélisation, la tarification et l’évaluation prévisionnelle des dépenses d’indemnisation des sinistres. Ces méthodes permettent, notamment de déterminer le montant des primes et de décider le montant de capital au risque.
Assessment :
1 examen terminal et 1 examen partiel
- Portfolio management
Portfolio management
Ects : 4
Lecturer :
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Théorie de Markowitz pour le choix de portefeuille (critère moyenne-variance) ; notion de portefeuille efficient ; mesure de risque et Value at Risk.
Portefeuille de Marché et Portefeuille Tangent, théorème des deux fonds, modèle du CAPM, équation de la Security Market Line et beta.
Les différents indicateurs : ratio de Sharpe, alpha, ratio de Treynor.
La décompostion et rémunération du risque: modèles à facteurs, modèle de Fama-French, modèles APT.
Analyse factorielle.
Recommended prerequisites :
connaissances en optimisation convexe sous contraintes affines
Require prerequisites :
connaissances des vecteurs gaussiens, algèbre linéaire de base, calcul différentiel.
Learning outcomes :
Ce cours est une introduction aux méthodes quantitatives en gestion de portefeuille.
Assessment :
Partiel, Examen, potentiellement projet en Python
Bibliography-recommended reading
"Quantitative Portfolio Management", Pierre Brugière, Springer 2020
- Control of Markov chains
Control of Markov chains
Ects : 4
Lecturer :
- NICOLAS FORIEN
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Rappels et compléments sur les chaînes de Markov et les temps d’arrêt. Analyse du problème d’arrêt optimal en horizon fini. Stratégies optimales et chaînes de Markov contrôlées.
Learning outcomes :
Introduire à travers l’étude de cas simples les idées du contrôle stochastique et montrer l’importance de ces idées dans des applications courantes, en finance notamment.
UE de majeure Actuariat S1
- Actuariat 1
Actuariat 1
Ects : 4
Lecturer :
- QUENTIN GUIBERT
- CLAIRE LAMON
Total hours : 37.5
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Présenter les notions et mécanismes de base de l’assurance, typologie des modèles. Principe de calculs des primes et comparaison des risques. Modélisation des risques non-vie (la fréquence des sinistres, les coûts des sinistres). Modélisation des risques vie (probabilité viagère, valeur actuelle probable). Éléments sur la modélisation du montant cumulé des sinistres (mutualisation et agrégation).
Learning outcomes :
Présenter les méthodes quantitatives de base dont dispose l’assureur pour la modélisation, la tarification et l’évaluation prévisionnelle des dépenses d’indemnisation des sinistres. Ces méthodes permettent, notamment de déterminer le montant des primes et de décider le montant de capital au risque.
Assessment :
1 examen terminal et 1 examen partiel
- Portfolio management
Portfolio management
Ects : 4
Lecturer :
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Théorie de Markowitz pour le choix de portefeuille (critère moyenne-variance) ; notion de portefeuille efficient ; mesure de risque et Value at Risk.
Portefeuille de Marché et Portefeuille Tangent, théorème des deux fonds, modèle du CAPM, équation de la Security Market Line et beta.
Les différents indicateurs : ratio de Sharpe, alpha, ratio de Treynor.
La décompostion et rémunération du risque: modèles à facteurs, modèle de Fama-French, modèles APT.
Analyse factorielle.
Recommended prerequisites :
connaissances en optimisation convexe sous contraintes affines
Require prerequisites :
connaissances des vecteurs gaussiens, algèbre linéaire de base, calcul différentiel.
Learning outcomes :
Ce cours est une introduction aux méthodes quantitatives en gestion de portefeuille.
Assessment :
Partiel, Examen, potentiellement projet en Python
Bibliography-recommended reading
"Quantitative Portfolio Management", Pierre Brugière, Springer 2020
UE Optionnelles majeure Actuariat
- Série temporelles
Série temporelles
Ects : 4
Lecturer :
Total hours : 37.5
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Échantillonnage Quantification Compression sans perte et correction d’erreurs L’algorithme FFT Filtres numériques Conception de filtres numériques Compression avec perte, introduction au MP3
Learning outcomes :
Comprendre les mathématiques du filtrage et du traitement de l’information et les principes de la numérisation des signaux. Avoir une vision globale des techniques du traitement de l’information.
- Monte-Carlo methods
Monte-Carlo methods
Ects : 4
Lecturer :
- CHRISTIAN ROBERT
Total hours : 40.5
Overview :
Volume horaire détaillé : CM : 10h30 TD : 6h00 TP : 24h00
- Introduction de la méthode de Monte-Carlo
- Méthodes de simulation de variables aléatoires
- Techniques de réduction de variance
Coefficient : 4 ECTS
Learning outcomes :
L’objectif de ce cours est d’introduire les méthodes dites de Monte-Carlo. Ces méthodes sont utilisées pour calculer des espérances (et par extension des intégrales) par simulation de variables aléatoires. La simplicite´ de la me´thode, sa flexibilite´ et son efficacite´ pour les proble`mes en grande dimension en font un outil inte´ressant pour des domaines d’applications variés allant de la physique à la finance de marché. L’objectif de ce cours est non seulement de fournir les bases théoriques des méthodes de Monte-Carlo, mais aussi de fournir les outils pour leur utilisation pratique.
Assessment :
- Examen écrit (70% de la note finale)
- Contrôle continu (30% de la note finale). Le contrôle continu se compose d'un projet à la maison et d'un TP noté en séance, tous deux à réaliser avec le language de programmation R.
Bibliography-recommended reading
- C.P.Robert and G.Casella. Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer-Verlag New York, 2 edition, 2004.
- B. Ycart. Modèles et Algorithmes Markoviens, volume 39 of Mathématiques et Applications. Springer-Verlag Berlin Heidelberg, 2002.
UE de majeure méthodes mathématiques en économie S1
- Portfolio management
Portfolio management
Ects : 4
Lecturer :
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Théorie de Markowitz pour le choix de portefeuille (critère moyenne-variance) ; notion de portefeuille efficient ; mesure de risque et Value at Risk.
Portefeuille de Marché et Portefeuille Tangent, théorème des deux fonds, modèle du CAPM, équation de la Security Market Line et beta.
Les différents indicateurs : ratio de Sharpe, alpha, ratio de Treynor.
La décompostion et rémunération du risque: modèles à facteurs, modèle de Fama-French, modèles APT.
Analyse factorielle.
Recommended prerequisites :
connaissances en optimisation convexe sous contraintes affines
Require prerequisites :
connaissances des vecteurs gaussiens, algèbre linéaire de base, calcul différentiel.
Learning outcomes :
Ce cours est une introduction aux méthodes quantitatives en gestion de portefeuille.
Assessment :
Partiel, Examen, potentiellement projet en Python
Bibliography-recommended reading
"Quantitative Portfolio Management", Pierre Brugière, Springer 2020
- Microéconomie : Théorie des contrats
Microéconomie : Théorie des contrats
Ects : 4
Lecturer :
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Rappel de micro-économie : notions de décision (indifférence, dominance stochastique et aversion au risque). Notions d’équilibres et optima de Pareto, quelques notions utiles venant de la théorie des jeux. Modèles d’Akerlof et de Spence. Modèle principal agent : sélection adverse et modèle d’action cachée. Synthèse sur le rôle de l’asymétrie d’information.
Learning outcomes :
Étude des asymétries d’information et de la théorie des contrats.
UE optionnelle - majeure méthodes mathématiques en économie S1
- Actuariat 1
Actuariat 1
Ects : 4
Lecturer :
- QUENTIN GUIBERT
- CLAIRE LAMON
Total hours : 37.5
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Présenter les notions et mécanismes de base de l’assurance, typologie des modèles. Principe de calculs des primes et comparaison des risques. Modélisation des risques non-vie (la fréquence des sinistres, les coûts des sinistres). Modélisation des risques vie (probabilité viagère, valeur actuelle probable). Éléments sur la modélisation du montant cumulé des sinistres (mutualisation et agrégation).
Learning outcomes :
Présenter les méthodes quantitatives de base dont dispose l’assureur pour la modélisation, la tarification et l’évaluation prévisionnelle des dépenses d’indemnisation des sinistres. Ces méthodes permettent, notamment de déterminer le montant des primes et de décider le montant de capital au risque.
Assessment :
1 examen terminal et 1 examen partiel
- Série temporelles
Série temporelles
Ects : 4
Lecturer :
Total hours : 37.5
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Échantillonnage Quantification Compression sans perte et correction d’erreurs L’algorithme FFT Filtres numériques Conception de filtres numériques Compression avec perte, introduction au MP3
Learning outcomes :
Comprendre les mathématiques du filtrage et du traitement de l’information et les principes de la numérisation des signaux. Avoir une vision globale des techniques du traitement de l’information.
- Monte-Carlo methods
Monte-Carlo methods
Ects : 4
Lecturer :
- CHRISTIAN ROBERT
Total hours : 40.5
Overview :
Volume horaire détaillé : CM : 10h30 TD : 6h00 TP : 24h00
- Introduction de la méthode de Monte-Carlo
- Méthodes de simulation de variables aléatoires
- Techniques de réduction de variance
Coefficient : 4 ECTS
Learning outcomes :
L’objectif de ce cours est d’introduire les méthodes dites de Monte-Carlo. Ces méthodes sont utilisées pour calculer des espérances (et par extension des intégrales) par simulation de variables aléatoires. La simplicite´ de la me´thode, sa flexibilite´ et son efficacite´ pour les proble`mes en grande dimension en font un outil inte´ressant pour des domaines d’applications variés allant de la physique à la finance de marché. L’objectif de ce cours est non seulement de fournir les bases théoriques des méthodes de Monte-Carlo, mais aussi de fournir les outils pour leur utilisation pratique.
Assessment :
- Examen écrit (70% de la note finale)
- Contrôle continu (30% de la note finale). Le contrôle continu se compose d'un projet à la maison et d'un TP noté en séance, tous deux à réaliser avec le language de programmation R.
Bibliography-recommended reading
- C.P.Robert and G.Casella. Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer-Verlag New York, 2 edition, 2004.
- B. Ycart. Modèles et Algorithmes Markoviens, volume 39 of Mathématiques et Applications. Springer-Verlag Berlin Heidelberg, 2002.
UE Obligatoires
- Brownian motion and evaluation of contingent claims
Brownian motion and evaluation of contingent claims
Ects : 4
Lecturer :
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Évaluation d’actifs contingents en absence d’opportunités d’arbitrage : cadre du temps discret opportunités d’arbitrage ; stratégies de réplication et évaluation ; modèle de Cox-Ross et Rubinstein. Introduction au calcul stochastique en temps continu (mouvement Brownien ; intégrale d’Itô). Modèle de Black et Scholes (modèle de marché en temps continu ; équation de Black et Scholes et prix d’options ; définition et utilisation des grecques).
Learning outcomes :
Étude du mouvement Brownien et son utilisation pour la modélisation des prix des actifs financiers. Présenter la méthodologie de l’évaluation d’actifs en Absence d’opportunités d’Arbitrage dans des modèles en temps continu et présenter le modèle de Black et Scholes.
- Poisson process
Poisson process
Ects : 4
Lecturer :
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
- Définitions et propriétés importantes des processus de Poisson (loi jointe des temps sauts, comportements asymptotiques). - Définitions et propriétés importantes des processus de Markov à espace d’états dénombrable.
Learning outcomes :
Introduction des processus à temps continus fondamentaux en probabilités, tels que les chaînes de Markov à espace d’états dénombrable.
- Méthodes numériques : problèmes dépendant du temps
Méthodes numériques : problèmes dépendant du temps
Ects : 4
Lecturer :
Total hours : 40.5
Overview :
Volume horaire détaillé : CM : 16h30, TD : 12h00, TP : 12h00
- Introduction
- Équations Différentielles Ordinaires : Euler Implicite, Runge Kutta, consistance, stabilité, A-stabilité
- appliations des EDO : épidemiologie
- Calcul de dérivée et contrôle: graphe computationnel, différentiation automatique
- application du calcul de dérivée: deep learning, contrôle
- Équations Différentielles Stochastiques : Euler Maruyama, Milstein
- applications de EDS: calcul d'options en finance sur modèle log-normal
Require prerequisites :
python, algèbre matricielle,
Learning outcomes :
Présentation de méthodes de résolution numérique des problèmes d’évolution et d’éléments d’analyse numérique. Cours théorique mais aussi une forte partie implementation (en python).
Learn more about the course :
Bibliography-recommended reading
- Anglais 2
Anglais 2
Ects : 2
Lecturer :
- VERONIQUE BOURREL
Total hours : 19.5
Overview :
Contenu : professionnel, culturel, d’actualité et de société
Forme : débats, jeux de rôles, quiz et activités ludiques
Méthodologie : prise de parole en public, travail sur l’expression orale
Thématique au programme: The professional world, Finance
Recommended prerequisites :
Une volonté de s’investir et un niveau d’anglais correct
Require prerequisites :
Une attitude professionnelle (ponctualité et sérieux)
Learning outcomes :
Savoir s’exprimer à l’oral
Améliorer ses compétences langagières et communicationnelles
Enrichir son vocabulaire
Développer sa créativité
Travailler en équipe
Assessment :
100% contrôle continu
3 notes : jeu de rôles +présentation orale + note d’oral
- Mémoire de M1
Mémoire de M1
Ects : 4
Overview :
Rédaction d’un projet par groupe de 2 ou 3 étudiants sur un thème proposé par un enseignant de la majeure suivie.
Learning outcomes :
Approfondissement et/ou la mise en pratique d’un thème de la majeure suivie à travers la rédaction d’un projet.
UE Optionnelles
- Actuariat 2
Actuariat 2
Ects : 4
Lecturer :
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
- Introduction au provisionnement en assurance
- Provisionnement en assurance non vie : PSAP, méthodes algorithmiques, méthodes stochastiques
- Provisionnement en assurance vie : formule prospective et rétrospective
- Théorie de la crédibilité
- Crédibilité bayésienne de Jewell
- Crédibilité linéaire de Buhlmann-Straub
- Théorie de la ruine
- Convergence, martingale, formule
- Formule explicite Poisson composée
- Approximations et borne de Cramer-Lundberg
- Impact de la loi de sévérité sur la probabilité de ruine
Recommended prerequisites :
Actuariat 1
Learning outcomes :
Étude de trois problématiques classiques en assurance : la théorie de la ruine (et les processus stochastiques associés), l’introduction au provisionnement vie et non-vie, et la théorie de la crédibilité.
Assessment :
1 examen terminal et 1 examen partiel
- Introduction au provisionnement en assurance
- Statistical learning
Statistical learning
Ects : 4
Lecturer :
Total hours : 39
Overview :
- Introduction : apprentissage supervisé/non-supervis / RL; régression et classification, procédure générale d’apprentissage, évaluation du modèle, sur/sous-apprentissage.
- Méthode des K plus proches voisins et notion de “curse of dimensionality”.
- Régression linéaire en grande dimension, sélection des variables et régularisation du modèle (Ridge et Lasso).
- Algorithme du gradient (descente classique, stochastique et mini-batch) (optionnel).
- réseaux néuronaux (neural networks): introduction, operation, datasets, training, exemples, implémentations
- (Non-supervisé) K-means clustering.
Coefficient : cf. CC
Require prerequisites :
Probabilités ( y compris "Espérance conditionnelle" ), statistiques ( Niveau L3 ), analyse numérique
Learning outcomes :
Connaître les bases de l’apprentissage statistique, en particulier dans un contexte de grande dimension, incluant les "neural networks".
Assessment :
cf. CC
Learn more about the course :
Bibliography-recommended reading
cf. site du cours.
- Comptabilité de l'entreprise
Comptabilité de l'entreprise
Ects : 4
Total hours : 39
Overview :
Sur la base d’une approche pédagogique fondée sur des exercices pratiques et des études de cas, l’étudiant acquiert les bases de la finance d’entreprise et les clés d’appréciation de leur santé financière, en particulier :-La compréhension du langage comptable, c’est-à-dire des écritures d’enregistrement et des agrégats du compte de résultat et du bilan.-La connaissance des méthodes de valorisation des actifs et des passifs, en particulier des provisions.-L’analyse de la rentabilité et de la capacité d’autofinancement d’une entreprise.-La présentation des règles essentielles en matière de consolidation de comptes.-Des repères en matière de fiscalité et d’IFRS.
Déroulement des cours :- Avant la séance. Des exercices simples de compréhension ou d’application sont à effectuer pour permettre aux étudiants de contrôler leurs acquis.- Pendant la séance. Les concepts éventuels sont rappelés, approfondis, voire réexpliqués si nécessaire. Des exercices ou cas préparés par écrit sont discutés et expliqués. Leur préparation effective par les étudiants est contrôlée.- Après la séance. Des pistes d’approfondissement, de réflexion et d’ouverture sont proposées pour permettre aux étudiants de faire le lien entre le cours, son cadre conceptuel et la réalité des entreprises.
Learning outcomes :
La comptabilité est un système d’organisation de l’information financière qui permet de saisir, classer et enregistrer des données chiffrées. Sa finalité est de réaliser des états à destination de tous les interlocuteurs d’une entité économique, qu’ils soient externes (administration fiscale, clients, créanciers, banques, marchés financiers), ou internes (dirigeants, gestionnaires, salariés).Le cours d’analyse financière s’attache à apporter les bases indispensables que tout étudiant doit posséder pour connaître et comprendre les principales normes et techniques comptables applicables aux entreprises dans le cadre du plan comptable général.Certaines divergences entre les conventions internationales (IFRS) et nationales (françaises) seront évoquées à titre d’illustration.
- Macroéconomie approfondie
Macroéconomie approfondie
Ects : 4
Lecturer :
Total hours : 39
Overview :
Volume horaire détaillé :
CM : 19h30 TD : 19h30
Objectifs pédagogiques :
Connaître, comprendre et mesurer l’impact des facteurs de la croissance en longue période et les causes de ses fluctuations autour du sentier de croissance d’équilibre (steady state growth), dans des économies en situation de laissez faire.
Comprendre l’impact de l’accumulation du capital, de l’emploi du travail et du progrès technique sur la croissance en longue période, dans le cadre de la fonction de production agrégée avec rendements constants. Mesurer les contributions a` la croissance des facteurs de production
Estimer l’impact sur la croissance de chocs affectant les choix intertemporels, la propension à épargner, la propension à investir, la population active, la productivité globale des facteurs
Comprendre les enjeux et les débats contemporains sur la croissance et le développement économique, dans le contexte du changement climatique.
Contenu pédagogique :
1. Faits stylise´s : tendances, fluctuations (Kaldor & Piketty)
2. La Fonction de Production Agre´ge´e
3. Croissance avec progre`s technique exoge`ne et rendements constants (Solow)
4. Croissance & re´partition (Goodwin)
5. Croissance optimale et re`gle d’or (Cass, Koopman et Ramsey)
6. The´orie du cycle re´el (Kyndland & Prescott)
7. Mode`les a` generations imbrique´es (Diamond)
8. Croissance avec progre`s technique endoge`ne et rendements croissants (Romer, Lucas)
9. Croissance endoge`ne et innovation technologique avec destruction cre´atrice (Aghion & Howitt)
10. Changement climatique et transition e´cologique (Acemoglu, Aghion Bursztyn and Hemous, 2012)
Modalités pédagogiques :
Un exercice d'application correspondant à chaque leçon est préparé par les étudiants puis corrigé en classe de travaux dirig és.
L'ensemble des supports (leçons et dossier de TD) est accessible sur le site de l'Unité d'enseignement.
Recommended prerequisites :
Macroéconomie analyse du court et du moyen terme, Microéconomie : programmes d'optimisations du consommateur et du producteur
Require prerequisites :
Macroéconomie, Microéconomie.
Learning outcomes :
Analyse approfondie des modèles de la macroéconomie de long-terme.
Assessment :
Partiel et Examen
Learn more about the course :
Bibliography-recommended reading
Aghion & Howitt (2009) : The Economics of Growth, MIT Press
- Statistique non paramétrique
Statistique non paramétrique
Ects : 4
Lecturer :
- LAETITIA COMMINGES
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
- 1 Introduction et rappels
- 2 Estimation de la fonction de répartition
- 3 Tests robustes
- 4 Estimation de densités par estimateurs à noyau
- 5 Régression non paramétrique
Learning outcomes :
Décrire les méthodes d’analyse statistique qui permettent de s’affranchir de la connaissance d’un modèle de forme trop contraint; prise de conscience des hypothèses de modélisation.
- Journées MIDO-IPJ
Journées MIDO-IPJ
Overview :
Le cours est effectué conjointement avec les étudiants de l’Institut Pratique de Journalisme, sur un thème qui change chaque année (le logement, l’énergie, la pauvreté...). Trois heures de cours magistral sont consacrées au thème d’application et la méthodologie. Ensuite, les étudiants sont répartis en groupe d’environ 4 mathématiciennes et 4 journalistes. Ils consacrent 3 demi-journées à l’analyse en groupe d’un jeu de données réel : exploration, recherche de problématique, modélisation statistique, tests d’inférence, conclusions. Pendant la dernière demi-journée, chaque groupe présente ses résultats. L’accent est mis sur la communication entre journalistes et mathématiciens et sur la rigueur de la procédure d’inférence.
Learning outcomes :
Travailler en groupe pluridisciplinaire avec les journalistes. Analyser des données réelles. Choisir, implémenter et valider les outils statistiques pertinents. Traduire les résultats mathématiques en langage courant.
- Allemand 1&2
Allemand 1&2
Ects : 4
Lecturer :
- ANNE CAUDAL
Total hours : 19.5
Overview :
Selon le groupe de niveau :
débutants: apprentissage de langue de tous les jours, qui permet faire passer des informations simples et de répondre à des besoins concrets (comme faire ses courses); découverte de faits de société et d'éléments culturels des pays de langues allemande
"recommençants": réactivation des savoirs acquis dans le secondaire; approfondissement des compétences écrites et orales; grammaire; exposés; jeux de rôle; découverte de faits de société et d'éléments culturels des pays de langues allemande
avancés: approfondissement des compétences écrites et orales à partir de documents authentiques ; grammaire; exposés; jeux de rôle; rédaction de CV et entraînement à l’entretien d’embauche; découverte de faits de société et d'éléments culturels des pays de langues allemande
Require prerequisites :
groupe des débutants: n'avoir jamais suivi de cours d'allemand
groupe des "recommançants": avoir des connaissances (A1) et/ou ne pas avoir fait d'allemand depuis plusieurs années
groupe des avancés: niveau B ou C
Learning outcomes :
Les étudiants seront répartis en groupes de niveau: débutants (étudiants n'ayant jamais suivi de cours d'allemand), "recommençants" (A1-A2) ou avancés (B-C).
groupes des étudiants recommançants ou des avancés : Le but visé est de rendre l’étudiant capable de communiquer dans le cadre de la vie de tous les jours, et si possible également dans celui du monde professionnel. Pour ce faire, on s’attachera non seulement à développer par des activités variées ses savoir-faire linguistiques fondamentaux dans les quatre domaines classiques (compréhension de l’écrit et expression écrite, compréhension orale et expression orale), mais aussi à lui donner des informations propres au monde germanophone afin de lui permettre de mieux connaître la culture des différents pays de langue allemande. Autant de connaissances qui permettront à l'étudiant de disposer d'atouts pour s'intégrer dans le monde du travail de l'aire germanophone.
Assessment :
100% contrôle continu
Bibliography-recommended reading
Des conseils de lecture et des adresses de sites internet seront fournis à la rentrée par l'enseignant.
- SAS, Excel, Matlab
SAS, Excel, Matlab
Lecturer :
- JEROME LEPAGNOL
Total hours : 15
Overview :
Apprentissage de SAS, Excel, Matlab.
Learning outcomes :
Mise à niveau sur les logiciels SAS, Excel, Matlab, susceptibles d’être utilisés en projet et souvent exigés pour les stages.
Assessment :
QCM en fin de cours
- Espagnol 1&2
Espagnol 1&2
Ects : 4
Lecturer :
- BEATRICE AMISSE
Total hours : 39
Overview :
Contenu selon le niveau du groupe, approche actionnelle : entraînement à la prise de parole en continu et en interaction (réagir, dialoguer) et à la compréhension écrite et orale : repérer les informations principales d’un texte, comprendre l’essentiel d’un document audio et/ou vidéo.
Le but visé est de rendre, à chaque niveau, l’étudiant capable de communiquer non seulement dans le cadre de la vie de tous les jours, mais aussi dans celui du monde professionnel avec des interlocuteurs natifs.
Require prerequisites :
Aucun
Learning outcomes :
Les étudiants seront divisés par groupes de niveau à l'issue d'un test qui sera organisé en début d'année (débutants acceptés).
Les activités seront adaptées en fonction du niveau des apprenants (depuis le niveau A1 jusqu'au niveau B2/C1, en fonction du groupe d'affectation). Les étudiants s’entraîneront principalement à la compréhension et à la production orale. L’objectif sera d’amener chaque étudiant, en fonction de son niveau de départ, à développer son autonomie langagière. L’accent sera également mis sur la connaissance des conventions sociales et des référents culturels propres au monde hispanique.
Assessment :
100% Contrôle Continu
Présence requise à tous les cours (cours annuel, inscription pour les semestres 1 & 2).
UE Fondamentales S2
- Brownian motion and evaluation of contingent claims
Brownian motion and evaluation of contingent claims
Ects : 4
Lecturer :
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
Évaluation d’actifs contingents en absence d’opportunités d’arbitrage : cadre du temps discret opportunités d’arbitrage ; stratégies de réplication et évaluation ; modèle de Cox-Ross et Rubinstein. Introduction au calcul stochastique en temps continu (mouvement Brownien ; intégrale d’Itô). Modèle de Black et Scholes (modèle de marché en temps continu ; équation de Black et Scholes et prix d’options ; définition et utilisation des grecques).
Learning outcomes :
Étude du mouvement Brownien et son utilisation pour la modélisation des prix des actifs financiers. Présenter la méthodologie de l’évaluation d’actifs en Absence d’opportunités d’Arbitrage dans des modèles en temps continu et présenter le modèle de Black et Scholes.
- Poisson process
Poisson process
Ects : 4
Lecturer :
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
- Définitions et propriétés importantes des processus de Poisson (loi jointe des temps sauts, comportements asymptotiques). - Définitions et propriétés importantes des processus de Markov à espace d’états dénombrable.
Learning outcomes :
Introduction des processus à temps continus fondamentaux en probabilités, tels que les chaînes de Markov à espace d’états dénombrable.
- Statistical learning
Statistical learning
Ects : 4
Lecturer :
Total hours : 39
Overview :
- Introduction : apprentissage supervisé/non-supervis / RL; régression et classification, procédure générale d’apprentissage, évaluation du modèle, sur/sous-apprentissage.
- Méthode des K plus proches voisins et notion de “curse of dimensionality”.
- Régression linéaire en grande dimension, sélection des variables et régularisation du modèle (Ridge et Lasso).
- Algorithme du gradient (descente classique, stochastique et mini-batch) (optionnel).
- réseaux néuronaux (neural networks): introduction, operation, datasets, training, exemples, implémentations
- (Non-supervisé) K-means clustering.
Coefficient : cf. CC
Require prerequisites :
Probabilités ( y compris "Espérance conditionnelle" ), statistiques ( Niveau L3 ), analyse numérique
Learning outcomes :
Connaître les bases de l’apprentissage statistique, en particulier dans un contexte de grande dimension, incluant les "neural networks".
Assessment :
cf. CC
Learn more about the course :
Bibliography-recommended reading
cf. site du cours.
UE de majeure Statistiques S2
- Statistique non paramétrique
Statistique non paramétrique
Ects : 4
Lecturer :
- LAETITIA COMMINGES
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
- 1 Introduction et rappels
- 2 Estimation de la fonction de répartition
- 3 Tests robustes
- 4 Estimation de densités par estimateurs à noyau
- 5 Régression non paramétrique
Learning outcomes :
Décrire les méthodes d’analyse statistique qui permettent de s’affranchir de la connaissance d’un modèle de forme trop contraint; prise de conscience des hypothèses de modélisation.
- Journées MIDO-IPJ
Journées MIDO-IPJ
Overview :
Le cours est effectué conjointement avec les étudiants de l’Institut Pratique de Journalisme, sur un thème qui change chaque année (le logement, l’énergie, la pauvreté...). Trois heures de cours magistral sont consacrées au thème d’application et la méthodologie. Ensuite, les étudiants sont répartis en groupe d’environ 4 mathématiciennes et 4 journalistes. Ils consacrent 3 demi-journées à l’analyse en groupe d’un jeu de données réel : exploration, recherche de problématique, modélisation statistique, tests d’inférence, conclusions. Pendant la dernière demi-journée, chaque groupe présente ses résultats. L’accent est mis sur la communication entre journalistes et mathématiciens et sur la rigueur de la procédure d’inférence.
Learning outcomes :
Travailler en groupe pluridisciplinaire avec les journalistes. Analyser des données réelles. Choisir, implémenter et valider les outils statistiques pertinents. Traduire les résultats mathématiques en langage courant.
- Méthodes numériques : problèmes dépendant du temps
Méthodes numériques : problèmes dépendant du temps
Ects : 4
Lecturer :
Total hours : 40.5
Overview :
Volume horaire détaillé : CM : 16h30, TD : 12h00, TP : 12h00
- Introduction
- Équations Différentielles Ordinaires : Euler Implicite, Runge Kutta, consistance, stabilité, A-stabilité
- appliations des EDO : épidemiologie
- Calcul de dérivée et contrôle: graphe computationnel, différentiation automatique
- application du calcul de dérivée: deep learning, contrôle
- Équations Différentielles Stochastiques : Euler Maruyama, Milstein
- applications de EDS: calcul d'options en finance sur modèle log-normal
Require prerequisites :
python, algèbre matricielle,
Learning outcomes :
Présentation de méthodes de résolution numérique des problèmes d’évolution et d’éléments d’analyse numérique. Cours théorique mais aussi une forte partie implementation (en python).
Learn more about the course :
Bibliography-recommended reading
UE complémentaire
- Anglais 2
Anglais 2
Ects : 2
Lecturer :
- VERONIQUE BOURREL
Total hours : 19.5
Overview :
Contenu : professionnel, culturel, d’actualité et de société
Forme : débats, jeux de rôles, quiz et activités ludiques
Méthodologie : prise de parole en public, travail sur l’expression orale
Thématique au programme: The professional world, Finance
Recommended prerequisites :
Une volonté de s’investir et un niveau d’anglais correct
Require prerequisites :
Une attitude professionnelle (ponctualité et sérieux)
Learning outcomes :
Savoir s’exprimer à l’oral
Améliorer ses compétences langagières et communicationnelles
Enrichir son vocabulaire
Développer sa créativité
Travailler en équipe
Assessment :
100% contrôle continu
3 notes : jeu de rôles +présentation orale + note d’oral
- Mémoire de M1
Mémoire de M1
Ects : 4
Overview :
Rédaction d’un projet par groupe de 2 ou 3 étudiants sur un thème proposé par un enseignant de la majeure suivie.
Learning outcomes :
Approfondissement et/ou la mise en pratique d’un thème de la majeure suivie à travers la rédaction d’un projet.
UE Optionnelle majeure statistiques S2
- Actuariat 2
Actuariat 2
Ects : 4
Lecturer :
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
- Introduction au provisionnement en assurance
- Provisionnement en assurance non vie : PSAP, méthodes algorithmiques, méthodes stochastiques
- Provisionnement en assurance vie : formule prospective et rétrospective
- Théorie de la crédibilité
- Crédibilité bayésienne de Jewell
- Crédibilité linéaire de Buhlmann-Straub
- Théorie de la ruine
- Convergence, martingale, formule
- Formule explicite Poisson composée
- Approximations et borne de Cramer-Lundberg
- Impact de la loi de sévérité sur la probabilité de ruine
Recommended prerequisites :
Actuariat 1
Learning outcomes :
Étude de trois problématiques classiques en assurance : la théorie de la ruine (et les processus stochastiques associés), l’introduction au provisionnement vie et non-vie, et la théorie de la crédibilité.
Assessment :
1 examen terminal et 1 examen partiel
- Introduction au provisionnement en assurance
- Comptabilité de l'entreprise
Comptabilité de l'entreprise
Ects : 4
Total hours : 39
Overview :
Sur la base d’une approche pédagogique fondée sur des exercices pratiques et des études de cas, l’étudiant acquiert les bases de la finance d’entreprise et les clés d’appréciation de leur santé financière, en particulier :-La compréhension du langage comptable, c’est-à-dire des écritures d’enregistrement et des agrégats du compte de résultat et du bilan.-La connaissance des méthodes de valorisation des actifs et des passifs, en particulier des provisions.-L’analyse de la rentabilité et de la capacité d’autofinancement d’une entreprise.-La présentation des règles essentielles en matière de consolidation de comptes.-Des repères en matière de fiscalité et d’IFRS.
Déroulement des cours :- Avant la séance. Des exercices simples de compréhension ou d’application sont à effectuer pour permettre aux étudiants de contrôler leurs acquis.- Pendant la séance. Les concepts éventuels sont rappelés, approfondis, voire réexpliqués si nécessaire. Des exercices ou cas préparés par écrit sont discutés et expliqués. Leur préparation effective par les étudiants est contrôlée.- Après la séance. Des pistes d’approfondissement, de réflexion et d’ouverture sont proposées pour permettre aux étudiants de faire le lien entre le cours, son cadre conceptuel et la réalité des entreprises.
Learning outcomes :
La comptabilité est un système d’organisation de l’information financière qui permet de saisir, classer et enregistrer des données chiffrées. Sa finalité est de réaliser des états à destination de tous les interlocuteurs d’une entité économique, qu’ils soient externes (administration fiscale, clients, créanciers, banques, marchés financiers), ou internes (dirigeants, gestionnaires, salariés).Le cours d’analyse financière s’attache à apporter les bases indispensables que tout étudiant doit posséder pour connaître et comprendre les principales normes et techniques comptables applicables aux entreprises dans le cadre du plan comptable général.Certaines divergences entre les conventions internationales (IFRS) et nationales (françaises) seront évoquées à titre d’illustration.
- Allemand 1&2
Allemand 1&2
Ects : 4
Lecturer :
- ANNE CAUDAL
Total hours : 19.5
Overview :
Selon le groupe de niveau :
débutants: apprentissage de langue de tous les jours, qui permet faire passer des informations simples et de répondre à des besoins concrets (comme faire ses courses); découverte de faits de société et d'éléments culturels des pays de langues allemande
"recommençants": réactivation des savoirs acquis dans le secondaire; approfondissement des compétences écrites et orales; grammaire; exposés; jeux de rôle; découverte de faits de société et d'éléments culturels des pays de langues allemande
avancés: approfondissement des compétences écrites et orales à partir de documents authentiques ; grammaire; exposés; jeux de rôle; rédaction de CV et entraînement à l’entretien d’embauche; découverte de faits de société et d'éléments culturels des pays de langues allemande
Require prerequisites :
groupe des débutants: n'avoir jamais suivi de cours d'allemand
groupe des "recommançants": avoir des connaissances (A1) et/ou ne pas avoir fait d'allemand depuis plusieurs années
groupe des avancés: niveau B ou C
Learning outcomes :
Les étudiants seront répartis en groupes de niveau: débutants (étudiants n'ayant jamais suivi de cours d'allemand), "recommençants" (A1-A2) ou avancés (B-C).
groupes des étudiants recommançants ou des avancés : Le but visé est de rendre l’étudiant capable de communiquer dans le cadre de la vie de tous les jours, et si possible également dans celui du monde professionnel. Pour ce faire, on s’attachera non seulement à développer par des activités variées ses savoir-faire linguistiques fondamentaux dans les quatre domaines classiques (compréhension de l’écrit et expression écrite, compréhension orale et expression orale), mais aussi à lui donner des informations propres au monde germanophone afin de lui permettre de mieux connaître la culture des différents pays de langue allemande. Autant de connaissances qui permettront à l'étudiant de disposer d'atouts pour s'intégrer dans le monde du travail de l'aire germanophone.
Assessment :
100% contrôle continu
Bibliography-recommended reading
Des conseils de lecture et des adresses de sites internet seront fournis à la rentrée par l'enseignant.
- Espagnol 1&2
Espagnol 1&2
Ects : 4
Lecturer :
- BEATRICE AMISSE
Total hours : 39
Overview :
Contenu selon le niveau du groupe, approche actionnelle : entraînement à la prise de parole en continu et en interaction (réagir, dialoguer) et à la compréhension écrite et orale : repérer les informations principales d’un texte, comprendre l’essentiel d’un document audio et/ou vidéo.
Le but visé est de rendre, à chaque niveau, l’étudiant capable de communiquer non seulement dans le cadre de la vie de tous les jours, mais aussi dans celui du monde professionnel avec des interlocuteurs natifs.
Require prerequisites :
Aucun
Learning outcomes :
Les étudiants seront divisés par groupes de niveau à l'issue d'un test qui sera organisé en début d'année (débutants acceptés).
Les activités seront adaptées en fonction du niveau des apprenants (depuis le niveau A1 jusqu'au niveau B2/C1, en fonction du groupe d'affectation). Les étudiants s’entraîneront principalement à la compréhension et à la production orale. L’objectif sera d’amener chaque étudiant, en fonction de son niveau de départ, à développer son autonomie langagière. L’accent sera également mis sur la connaissance des conventions sociales et des référents culturels propres au monde hispanique.
Assessment :
100% Contrôle Continu
Présence requise à tous les cours (cours annuel, inscription pour les semestres 1 & 2).
- Analyse convexe
Analyse convexe
UE de majeure Actuariat S2
- Actuariat 2
Actuariat 2
Ects : 4
Lecturer :
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
- Introduction au provisionnement en assurance
- Provisionnement en assurance non vie : PSAP, méthodes algorithmiques, méthodes stochastiques
- Provisionnement en assurance vie : formule prospective et rétrospective
- Théorie de la crédibilité
- Crédibilité bayésienne de Jewell
- Crédibilité linéaire de Buhlmann-Straub
- Théorie de la ruine
- Convergence, martingale, formule
- Formule explicite Poisson composée
- Approximations et borne de Cramer-Lundberg
- Impact de la loi de sévérité sur la probabilité de ruine
Recommended prerequisites :
Actuariat 1
Learning outcomes :
Étude de trois problématiques classiques en assurance : la théorie de la ruine (et les processus stochastiques associés), l’introduction au provisionnement vie et non-vie, et la théorie de la crédibilité.
Assessment :
1 examen terminal et 1 examen partiel
- Introduction au provisionnement en assurance
- Comptabilité de l'entreprise
Comptabilité de l'entreprise
Ects : 4
Total hours : 39
Overview :
Sur la base d’une approche pédagogique fondée sur des exercices pratiques et des études de cas, l’étudiant acquiert les bases de la finance d’entreprise et les clés d’appréciation de leur santé financière, en particulier :-La compréhension du langage comptable, c’est-à-dire des écritures d’enregistrement et des agrégats du compte de résultat et du bilan.-La connaissance des méthodes de valorisation des actifs et des passifs, en particulier des provisions.-L’analyse de la rentabilité et de la capacité d’autofinancement d’une entreprise.-La présentation des règles essentielles en matière de consolidation de comptes.-Des repères en matière de fiscalité et d’IFRS.
Déroulement des cours :- Avant la séance. Des exercices simples de compréhension ou d’application sont à effectuer pour permettre aux étudiants de contrôler leurs acquis.- Pendant la séance. Les concepts éventuels sont rappelés, approfondis, voire réexpliqués si nécessaire. Des exercices ou cas préparés par écrit sont discutés et expliqués. Leur préparation effective par les étudiants est contrôlée.- Après la séance. Des pistes d’approfondissement, de réflexion et d’ouverture sont proposées pour permettre aux étudiants de faire le lien entre le cours, son cadre conceptuel et la réalité des entreprises.
Learning outcomes :
La comptabilité est un système d’organisation de l’information financière qui permet de saisir, classer et enregistrer des données chiffrées. Sa finalité est de réaliser des états à destination de tous les interlocuteurs d’une entité économique, qu’ils soient externes (administration fiscale, clients, créanciers, banques, marchés financiers), ou internes (dirigeants, gestionnaires, salariés).Le cours d’analyse financière s’attache à apporter les bases indispensables que tout étudiant doit posséder pour connaître et comprendre les principales normes et techniques comptables applicables aux entreprises dans le cadre du plan comptable général.Certaines divergences entre les conventions internationales (IFRS) et nationales (françaises) seront évoquées à titre d’illustration.
UE de majeure méthodes mathématiques en économie S2
- Macroéconomie approfondie
Macroéconomie approfondie
Ects : 4
Lecturer :
Total hours : 39
Overview :
Volume horaire détaillé :
CM : 19h30 TD : 19h30
Objectifs pédagogiques :
Connaître, comprendre et mesurer l’impact des facteurs de la croissance en longue période et les causes de ses fluctuations autour du sentier de croissance d’équilibre (steady state growth), dans des économies en situation de laissez faire.
Comprendre l’impact de l’accumulation du capital, de l’emploi du travail et du progrès technique sur la croissance en longue période, dans le cadre de la fonction de production agrégée avec rendements constants. Mesurer les contributions a` la croissance des facteurs de production
Estimer l’impact sur la croissance de chocs affectant les choix intertemporels, la propension à épargner, la propension à investir, la population active, la productivité globale des facteurs
Comprendre les enjeux et les débats contemporains sur la croissance et le développement économique, dans le contexte du changement climatique.
Contenu pédagogique :
1. Faits stylise´s : tendances, fluctuations (Kaldor & Piketty)
2. La Fonction de Production Agre´ge´e
3. Croissance avec progre`s technique exoge`ne et rendements constants (Solow)
4. Croissance & re´partition (Goodwin)
5. Croissance optimale et re`gle d’or (Cass, Koopman et Ramsey)
6. The´orie du cycle re´el (Kyndland & Prescott)
7. Mode`les a` generations imbrique´es (Diamond)
8. Croissance avec progre`s technique endoge`ne et rendements croissants (Romer, Lucas)
9. Croissance endoge`ne et innovation technologique avec destruction cre´atrice (Aghion & Howitt)
10. Changement climatique et transition e´cologique (Acemoglu, Aghion Bursztyn and Hemous, 2012)
Modalités pédagogiques :
Un exercice d'application correspondant à chaque leçon est préparé par les étudiants puis corrigé en classe de travaux dirig és.
L'ensemble des supports (leçons et dossier de TD) est accessible sur le site de l'Unité d'enseignement.
Recommended prerequisites :
Macroéconomie analyse du court et du moyen terme, Microéconomie : programmes d'optimisations du consommateur et du producteur
Require prerequisites :
Macroéconomie, Microéconomie.
Learning outcomes :
Analyse approfondie des modèles de la macroéconomie de long-terme.
Assessment :
Partiel et Examen
Learn more about the course :
Bibliography-recommended reading
Aghion & Howitt (2009) : The Economics of Growth, MIT Press
UE optionnelle - majeure méthodes mathématiques en économie S2
- Actuariat 2
Actuariat 2
Ects : 4
Lecturer :
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
- Introduction au provisionnement en assurance
- Provisionnement en assurance non vie : PSAP, méthodes algorithmiques, méthodes stochastiques
- Provisionnement en assurance vie : formule prospective et rétrospective
- Théorie de la crédibilité
- Crédibilité bayésienne de Jewell
- Crédibilité linéaire de Buhlmann-Straub
- Théorie de la ruine
- Convergence, martingale, formule
- Formule explicite Poisson composée
- Approximations et borne de Cramer-Lundberg
- Impact de la loi de sévérité sur la probabilité de ruine
Recommended prerequisites :
Actuariat 1
Learning outcomes :
Étude de trois problématiques classiques en assurance : la théorie de la ruine (et les processus stochastiques associés), l’introduction au provisionnement vie et non-vie, et la théorie de la crédibilité.
Assessment :
1 examen terminal et 1 examen partiel
- Introduction au provisionnement en assurance
- Statistique non paramétrique
Statistique non paramétrique
Ects : 4
Lecturer :
- LAETITIA COMMINGES
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
- 1 Introduction et rappels
- 2 Estimation de la fonction de répartition
- 3 Tests robustes
- 4 Estimation de densités par estimateurs à noyau
- 5 Régression non paramétrique
Learning outcomes :
Décrire les méthodes d’analyse statistique qui permettent de s’affranchir de la connaissance d’un modèle de forme trop contraint; prise de conscience des hypothèses de modélisation.
- Comptabilité de l'entreprise
Comptabilité de l'entreprise
Ects : 4
Total hours : 39
Overview :
Sur la base d’une approche pédagogique fondée sur des exercices pratiques et des études de cas, l’étudiant acquiert les bases de la finance d’entreprise et les clés d’appréciation de leur santé financière, en particulier :-La compréhension du langage comptable, c’est-à-dire des écritures d’enregistrement et des agrégats du compte de résultat et du bilan.-La connaissance des méthodes de valorisation des actifs et des passifs, en particulier des provisions.-L’analyse de la rentabilité et de la capacité d’autofinancement d’une entreprise.-La présentation des règles essentielles en matière de consolidation de comptes.-Des repères en matière de fiscalité et d’IFRS.
Déroulement des cours :- Avant la séance. Des exercices simples de compréhension ou d’application sont à effectuer pour permettre aux étudiants de contrôler leurs acquis.- Pendant la séance. Les concepts éventuels sont rappelés, approfondis, voire réexpliqués si nécessaire. Des exercices ou cas préparés par écrit sont discutés et expliqués. Leur préparation effective par les étudiants est contrôlée.- Après la séance. Des pistes d’approfondissement, de réflexion et d’ouverture sont proposées pour permettre aux étudiants de faire le lien entre le cours, son cadre conceptuel et la réalité des entreprises.
Learning outcomes :
La comptabilité est un système d’organisation de l’information financière qui permet de saisir, classer et enregistrer des données chiffrées. Sa finalité est de réaliser des états à destination de tous les interlocuteurs d’une entité économique, qu’ils soient externes (administration fiscale, clients, créanciers, banques, marchés financiers), ou internes (dirigeants, gestionnaires, salariés).Le cours d’analyse financière s’attache à apporter les bases indispensables que tout étudiant doit posséder pour connaître et comprendre les principales normes et techniques comptables applicables aux entreprises dans le cadre du plan comptable général.Certaines divergences entre les conventions internationales (IFRS) et nationales (françaises) seront évoquées à titre d’illustration.
- Statistical learning
Statistical learning
Ects : 4
Lecturer :
Total hours : 39
Overview :
- Introduction : apprentissage supervisé/non-supervis / RL; régression et classification, procédure générale d’apprentissage, évaluation du modèle, sur/sous-apprentissage.
- Méthode des K plus proches voisins et notion de “curse of dimensionality”.
- Régression linéaire en grande dimension, sélection des variables et régularisation du modèle (Ridge et Lasso).
- Algorithme du gradient (descente classique, stochastique et mini-batch) (optionnel).
- réseaux néuronaux (neural networks): introduction, operation, datasets, training, exemples, implémentations
- (Non-supervisé) K-means clustering.
Coefficient : cf. CC
Require prerequisites :
Probabilités ( y compris "Espérance conditionnelle" ), statistiques ( Niveau L3 ), analyse numérique
Learning outcomes :
Connaître les bases de l’apprentissage statistique, en particulier dans un contexte de grande dimension, incluant les "neural networks".
Assessment :
cf. CC
Learn more about the course :
Bibliography-recommended reading
cf. site du cours.
- Allemand 1&2
Allemand 1&2
Ects : 4
Lecturer :
- ANNE CAUDAL
Total hours : 19.5
Overview :
Selon le groupe de niveau :
débutants: apprentissage de langue de tous les jours, qui permet faire passer des informations simples et de répondre à des besoins concrets (comme faire ses courses); découverte de faits de société et d'éléments culturels des pays de langues allemande
"recommençants": réactivation des savoirs acquis dans le secondaire; approfondissement des compétences écrites et orales; grammaire; exposés; jeux de rôle; découverte de faits de société et d'éléments culturels des pays de langues allemande
avancés: approfondissement des compétences écrites et orales à partir de documents authentiques ; grammaire; exposés; jeux de rôle; rédaction de CV et entraînement à l’entretien d’embauche; découverte de faits de société et d'éléments culturels des pays de langues allemande
Require prerequisites :
groupe des débutants: n'avoir jamais suivi de cours d'allemand
groupe des "recommançants": avoir des connaissances (A1) et/ou ne pas avoir fait d'allemand depuis plusieurs années
groupe des avancés: niveau B ou C
Learning outcomes :
Les étudiants seront répartis en groupes de niveau: débutants (étudiants n'ayant jamais suivi de cours d'allemand), "recommençants" (A1-A2) ou avancés (B-C).
groupes des étudiants recommançants ou des avancés : Le but visé est de rendre l’étudiant capable de communiquer dans le cadre de la vie de tous les jours, et si possible également dans celui du monde professionnel. Pour ce faire, on s’attachera non seulement à développer par des activités variées ses savoir-faire linguistiques fondamentaux dans les quatre domaines classiques (compréhension de l’écrit et expression écrite, compréhension orale et expression orale), mais aussi à lui donner des informations propres au monde germanophone afin de lui permettre de mieux connaître la culture des différents pays de langue allemande. Autant de connaissances qui permettront à l'étudiant de disposer d'atouts pour s'intégrer dans le monde du travail de l'aire germanophone.
Assessment :
100% contrôle continu
Bibliography-recommended reading
Des conseils de lecture et des adresses de sites internet seront fournis à la rentrée par l'enseignant.
- Espagnol 1&2
Espagnol 1&2
Ects : 4
Lecturer :
- BEATRICE AMISSE
Total hours : 39
Overview :
Contenu selon le niveau du groupe, approche actionnelle : entraînement à la prise de parole en continu et en interaction (réagir, dialoguer) et à la compréhension écrite et orale : repérer les informations principales d’un texte, comprendre l’essentiel d’un document audio et/ou vidéo.
Le but visé est de rendre, à chaque niveau, l’étudiant capable de communiquer non seulement dans le cadre de la vie de tous les jours, mais aussi dans celui du monde professionnel avec des interlocuteurs natifs.
Require prerequisites :
Aucun
Learning outcomes :
Les étudiants seront divisés par groupes de niveau à l'issue d'un test qui sera organisé en début d'année (débutants acceptés).
Les activités seront adaptées en fonction du niveau des apprenants (depuis le niveau A1 jusqu'au niveau B2/C1, en fonction du groupe d'affectation). Les étudiants s’entraîneront principalement à la compréhension et à la production orale. L’objectif sera d’amener chaque étudiant, en fonction de son niveau de départ, à développer son autonomie langagière. L’accent sera également mis sur la connaissance des conventions sociales et des référents culturels propres au monde hispanique.
Assessment :
100% Contrôle Continu
Présence requise à tous les cours (cours annuel, inscription pour les semestres 1 & 2).
UE optionnelle 2 - majeure actuariat
- Statistique non paramétrique
Statistique non paramétrique
Ects : 4
Lecturer :
- LAETITIA COMMINGES
Total hours : 39
Overview :
Volume horaire détaillé : CM : 19h30 TD : 19h30
- 1 Introduction et rappels
- 2 Estimation de la fonction de répartition
- 3 Tests robustes
- 4 Estimation de densités par estimateurs à noyau
- 5 Régression non paramétrique
Learning outcomes :
Décrire les méthodes d’analyse statistique qui permettent de s’affranchir de la connaissance d’un modèle de forme trop contraint; prise de conscience des hypothèses de modélisation.
Academic Training Year 2025 - 2026 - subject to modification
Teaching Modalities
The program starts in September and attendance is required.
The program is divided into two semesters, S3 and S4. Each semester is made up of a foundational unit of instruction and supplementary courses. Each of the two foundational units consists of a number of courses. Each course is worth a certain number of ECTS credits; each unit corresponds to a specific number of ECTS credits obtained by passing the courses in the unit.
Internships and Supervised Projects
Internship not required.
Research-driven Programs
Training courses are developed in close collaboration with Dauphine's world-class research programs, which ensure high standards and innovation.
Research is organized around 6 disciplines all centered on the sciences of organizations and decision making.
Learn more about research at Dauphine