Program Year

UE obligatoires

  • Prévoyance et santé
  • Actuariat de la retraite en France
  • Théorie du risque et de la réassurance
  • Gestion globale des risques : VAR
  • Ethique, professionnalisme et gouvernance d'entreprise
  • Modèles de taux d'intérêt
  • Modèles de simulation en assurance
  • Comptabilité et réglementation de l'assurance

UE Complémentaires

  • Analyse de données et scoring
  • Bases de données
  • Programmes sociaux internationaux
  • Introduction à l'économie du risque et de l'assurance
  • Anglais de l'assurance et de la finance
  • Introduction général au Droit
  • Méthodes en Visual Basic
  • Actuaire : trouver son poste

UE Optionnels

  • Méthodes pour les modèles de régression

UE obligatoires

  • Solvency II & IFRS
  • Gestion actif-passif en assurance
  • Principe de l'assurance dommage
  • Théorie de l'assurance vie
  • Méthodes numériques en finance

UE Complémentaires

  • Machine Learning
  • Démographie et tables de mortalité
  • Séries temporelles et applications actuarielles

UE Optionnels

  • Risque de crédit

Academic Training Year 2021 - 2022 - subject to modification

UE obligatoires

  • Prévoyance et santé
  • Actuariat de la retraite en France
  • Théorie du risque et de la réassurance
  • Gestion globale des risques : VAR
  • Ethique, professionnalisme et gouvernance d'entreprise
  • Modèles de taux d'intérêt
  • Modèles de simulation en assurance
  • Comptabilité et réglementation de l'assurance

UE Complémentaires

  • Analyse de données et scoring
  • Bases de données
  • Programmes sociaux internationaux
  • Introduction à l'économie du risque et de l'assurance
  • Anglais de l'assurance et de la finance
  • Introduction général au Droit
  • Méthodes en Visual Basic
  • Actuaire : trouver son poste

UE Optionnels

  • Méthodes pour les modèles de régression

UE obligatoires

  • Solvency II & IFRS
  • Gestion actif-passif en assurance
  • Principe de l'assurance dommage
  • Théorie de l'assurance vie
  • Méthodes numériques en finance

UE Complémentaires

  • Machine Learning
  • Démographie et tables de mortalité
  • Séries temporelles et applications actuarielles

UE Optionnels

  • Risque de crédit

Academic Training Year 2021 - 2022 - subject to modification


Teaching Modalities

The program starts in September and attendance is required.
The program is divided into two semesters, S3 and S4. Each semester consists of supplementary courses, along with an internship that meets the distribution requirements in S4.

The grade for the first section of a course is the weighted average of the grades for continuous assessment, projects, midterm exams, and final exam. The continuous assessment grade can consist of a number of elements, including projects, homework, written or oral exams, attendance, and participation. Every course for which a student receives a final grade of 10/20 or above is deemed passed, and the appropriate ECTS credits are granted.
A foundational unit consists of one or more courses. Students are given a final grade for each unit. This grade is the weighted average of the final grades they have received for each course in the unit. The relative weight of the final grade in any given course is determined by the number of ECTS credits that course is worth. A foundational unit for which a student receives a final grade of 12/20 or above is deemed passed, and the appropriate ECTS credits (the sum of the ECTS credits for the courses that make up the block) are granted as long as the final grade for each component course is at least 10/20.
A supplementary unit for which a student receives a final grade of 10/20 or above is deemed passed, and the appropriate ECTS credits (the sum of the ECTS credits for the courses that make up the block) are granted as long as the final grade for each component course is at least 8/20.

A student will have passed the second year of the Master’s with a specialization in Mathematics and Applied Mathematics if all the following conditions are met:

  • They have taken at least 60 ECTS credits and receive a final grade for the year of at least 10/20
  • The final grade for each semester is at least 10/20
  • They receive a final grade of at least 12/20 for each of the two foundational units taken that year
  • The final grade for each course in each foundational unit taken that year is at least 10/20
  • They receive a final grade of at least 10/20 for each of the two supplementary units taken that year
  • The final grade for each supplementary course is at least 8/20
  • The final grade for each required * course is at least 10/20
  • The final grade for the internship is at least 12/20

*To pass the second year of the Master’s degree in Mathematics and Applied Mathematics with a specialization in Actuarial Sciences, a student must have received a grade of at least 10/20 in the following courses taught in the first year of the Master’s degree in Mathematics and Applied Mathematics with a specialization in Actuarial Sciences: “Actuarial Sciences 1” and “Actuarial Sciences 2”

Optional courses:
Because of their relevance to future actuaries, some second-year courses in the Master’s degree in Mathematics and Applied Mathematics with a specialty in Statistical and Financial Engineering (ISF) and third-year courses in the Centrale Supelec program are offered to students in the second year of the Master's degree with a specialization in Actuarial Sciences, but are entirely optional. If a student sits the exam for one of these courses and obtains a grade above 10/20, any points over 10 will be added to the supplementary unit in S4. Grades below or equal to 10/20 will not be added.


Internships and Supervised Projects

The degree includes an internship of at least five months duration. At the end of the internship, students must write and orally defend a thesis before a jury of faculty and members of the Actuarial Institute